首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6822篇
  免费   16篇
  国内免费   16篇
航空   3589篇
航天技术   2195篇
综合类   190篇
航天   880篇
  2021年   44篇
  2018年   93篇
  2017年   41篇
  2016年   46篇
  2014年   105篇
  2013年   143篇
  2012年   139篇
  2011年   216篇
  2010年   157篇
  2009年   256篇
  2008年   307篇
  2007年   164篇
  2006年   127篇
  2005年   138篇
  2004年   160篇
  2003年   203篇
  2002年   216篇
  2001年   256篇
  2000年   121篇
  1999年   178篇
  1998年   207篇
  1997年   148篇
  1996年   190篇
  1995年   247篇
  1994年   211篇
  1993年   139篇
  1992年   172篇
  1991年   85篇
  1990年   90篇
  1989年   187篇
  1988年   80篇
  1987年   78篇
  1986年   77篇
  1985年   212篇
  1984年   175篇
  1983年   140篇
  1982年   169篇
  1981年   211篇
  1980年   81篇
  1979年   75篇
  1978年   79篇
  1977年   49篇
  1976年   54篇
  1975年   77篇
  1974年   55篇
  1973年   39篇
  1972年   68篇
  1971年   57篇
  1970年   40篇
  1969年   48篇
排序方式: 共有6854条查询结果,搜索用时 0 毫秒
221.
As part of the NASA Advanced Life Support Flight Program, a Controlled Ecological Life Support System (CELSS) Test Facility Engineering Development Unit has been constructed and is undergoing initial operational testing at NASA Ames Research Center. The Engineering Development Unit (EDU) is a tightly closed, stringently controlled, ground-based testbed which provides a broad range of environmental conditions under which a variety of CELSS higher plant crops can be grown. Although the EDU was developed primarily to provide near-term engineering data and a realistic determination of the subsystem and system requirements necessary for the fabrication of a comparable flight unit, the EDU has also provided a means to evaluate plant crop productivity and physiology under controlled conditions. This paper describes the initial closed operational testing of the EDU, with emphasis on the hardware performance capabilities. Measured performance data during a 28-day closed operation period are compared with the specified functional requirements, and an example of inferring crop growth parameters from the test data is presented. Plans for future science and technology testing are also discussed.  相似文献   
222.
A ceramic material having a large dielectric constant at 77 K, ε=8000-12000, has been developed for capacitive energy storage at this temperature. A large matrix of multilayer ceramic capacitors were fabricated using conventional tape-casting methods to optimize the dielectric breakdown strength at 77 K, and measured energy storage values on these capacitors range up to 6 J/cm3 at 77 K. An unfused bank of these capacitors was voltage-cycled 105 times at 77 K without failure, and the heating effects during cycling were immeasurably small (i.e., nitrogen boiloff was monitored). An electrocaloric effect on discharge (ΔT~1 K) contributes to the thermal stability. Measurements of the frequency dependence of the dielectric properties of the ceramic at 77 K indicate a fundamental limit of about 8 μs for the switching repetition rate. Improved capacitor-manufacturing methods are discussed which can increase the energy density to the 20-30 J/cm3 range  相似文献   
223.
Two methods for constructing robust polarimetric constant-false-alarm-rate (CFAR) detectors that use elements of the scattering matrix are discussed. Both methods use robust estimators to recognize outliers and exclude them from further calculations. The first method weighs each sample of the surrounding vectors, and vectors that appear to be outliers are weighted with lower values than the others. The second method uses cluster algorithms to arrange the data in different clusters; some clusters contain the outliers, and others contain observations assumed to come from the main body of the data. The detectors are intended to be used in multitarget and nonhomogeneous-clutter environments  相似文献   
224.
225.
226.
Further cost reduction of the fiber optic gyroscope is necessary to meet the economic requirements of land navigation systems. Previous concentration was on the reduction of the number of splices and component improvements in the open-loop minimum configuration. Now non-essential components and splices are eliminated. The source-detector coupler is not part of the Sagnac interferometer, and serves solely to direct light from the interferometer into the output photodetector. Many commercial laser diodes incorporate a back-facet photodetector to monitor laser intensity. The signal returned from the Sagnac traverses the laser, and can be detected at this photodetector. The gyro signal can be distinguished from the laser signal by the bias modulation applied in the interferometer. Configuring a gyro in this manner eliminates a directional coupler and the separate photodetector, as well as up to two fiber splices in an all-fiber gyroscope. A production, open-loop fiber optic gyroscope has been modified to demonstrate this principle. The gyroscope exhibits performance comparable to the conventional minimum configuration  相似文献   
227.
In order to predict carbon sequestration of vegetation with the future rise in atmospheric CO2 concentration, [CO2] and temperature, long term effects of high [CO2] and high temperature on responses of both photosynthesis and transpiration of plants as a whole community to environmental parameters need to be elucidated. Especially in the last decade, many studies on photosynthetic acclimation to elevated [CO2] at gene, cell, tissue or leaf level for only vegetative growth phase (i.e. before formation of reproductive organs) have been conducted all over the world. However, CO2 acclimation studies at population or community level for a whole growing season are thus far very rare. Data obtained from repeatable experiments at population or community level for a whole growing season are necessary for modeling carbon sequestration of a plant community. On the other hand, in order to stabilize material circulation in the artificial ecological system of Closed Ecology Experiment Facilities (CEEF), it is necessary to predict material exchange rates in the biological systems. In particular, the material exchange rate in higher plant systems is highly variable during growth periods and there is a strong dependence on environmental conditions. For this reason, dependencies of both CO2 exchange rate and transpiration rate of three rice populations grown from seed under differing conditions of [CO2] and day/night air temperature (350 microL CO2 L-1, 24/17 degrees C (population A); 700 microL CO2 L-1, 24/17 degrees C (population B) and 700 microL CO2 L-1, 26/19 degrees C (population C)) upon PPFD, leaf temperature and [CO2] were investigated every two weeks during whole growing season. Growth of leaf lamina, leaf sheath, panicle and root was also compared. From this experiment, it was elucidated that acclimation of instantaneous photosynthetic response of rice population to [CO2] occurs in vegetative phase through changes in ratio of leaf area to whole plant dry weight, LAR. But, in reproductive growth phase (i.e. after initiation of panicle formation), the difference between photosynthetic response to [CO2] of population A and that of population B decreased. Although LAR of population C was almost always less than that of population A, there was no difference between the photosynthetic response to [CO2] of population A at 24 degrees C and that of population C at 26 degrees C for its whole growth period. These results are useful to make a model to predict carbon sequestration of rice community, which is an important type of vegetation especially in Asia in future global environmental change.  相似文献   
228.
Results are presented from recent ionospheric modification experiments in which the EISCAT UHF radar measured the E-region temperature and density response to high power RF heating above Tromsø. A variety of electrojet conditions were encountered during these experiments. In particular, the electron drift velocity varied considerably allowing the heating efficiency of the RF heater to be investigated as a function of electron flow velocity. These observations constitute the first direct investigation of electrojet temperature modifications by high power radio waves and provide a test of a recent theoretical model in which the combined effects of RF heating and of natural plasma turbulence associated with the Farley-Buneman instability have been considered.  相似文献   
229.
230.
Planetary protection has been an important consideration during the process of designing the Mars Observer mission. It affected trajectory design of both the interplanetary transfer and the orbits at Mars; these in turn affected the observation strategies developed for the mission. The Project relied mainly on the strategy of collision avoidance to prevent contamination of Mars. Conservative estimates of spacecraft reliability and Martian atmosphere density were used to evaluate decisions concerning the interplanetary trajectory, the orbit insertion phase at Mars, and operations in orbit at Mars and afterwards. Changes in the trajectory design, especially in the orbit insertion phase, required a refinement of those estimates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号