首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3353篇
  免费   24篇
  国内免费   14篇
航空   1758篇
航天技术   1153篇
综合类   18篇
航天   462篇
  2019年   20篇
  2018年   41篇
  2017年   19篇
  2016年   25篇
  2014年   66篇
  2013年   85篇
  2012年   71篇
  2011年   123篇
  2010年   92篇
  2009年   121篇
  2008年   186篇
  2007年   94篇
  2006年   64篇
  2005年   81篇
  2004年   83篇
  2003年   111篇
  2002年   68篇
  2001年   116篇
  2000年   54篇
  1999年   88篇
  1998年   96篇
  1997年   74篇
  1996年   94篇
  1995年   125篇
  1994年   101篇
  1993年   67篇
  1992年   104篇
  1991年   43篇
  1990年   37篇
  1989年   88篇
  1988年   35篇
  1987年   31篇
  1986年   32篇
  1985年   91篇
  1984年   96篇
  1983年   63篇
  1982年   85篇
  1981年   96篇
  1980年   34篇
  1979年   42篇
  1978年   33篇
  1977年   22篇
  1976年   22篇
  1975年   40篇
  1974年   25篇
  1973年   18篇
  1972年   29篇
  1970年   17篇
  1969年   17篇
  1967年   20篇
排序方式: 共有3391条查询结果,搜索用时 0 毫秒
601.
    
European Community action on broadcasting standards is desperately needed. This article examines the issue of technical standards, by looking first at the MAC packets directive on European standards for DBA transmission. It then considers high-definition television and the search for global standards. The author concludes by drawing some lessons regarding the European Community's involvement in high technology, and its role in broadcasting in particular.  相似文献   
602.
Due to the growing demands for system reliability and availability of large amounts of data, efficient fault detection techniques for dynamic systems are desired. In this paper, we consider fault detection in dynamic systems monitored by multiple sensors. Normal and faulty behaviors can be modeled as two hypotheses. Due to communication constraints, it is assumed that sensors can only send binary data to the fusion center. Under the assumption of independent and identically distributed (1ID) observations, we propose a distributed fault detection algorithm, including local detector design and decision fusion rule design, based on state estimation via particle filtering. Illustrative examples are presented to demonstrate the effectiveness of our approach.  相似文献   
603.
    
The major goals of NASA's Terrestrial Planet Finder (TPF) and the European Space Agency's Darwin missions are to detect terrestrial-sized extrasolar planets directly and to seek spectroscopic evidence of habitable conditions and life. Here we recommend wavelength ranges and spectral features for these missions. We assess known spectroscopic molecular band features of Earth, Venus, and Mars in the context of putative extrasolar analogs. The preferred wavelength ranges are 7-25 microns in the mid-IR and 0.5 to approximately 1.1 microns in the visible to near-IR. Detection of O2 or its photolytic product O3 merits highest priority. Liquid H2O is not a bioindicator, but it is considered essential to life. Substantial CO2 indicates an atmosphere and oxidation state typical of a terrestrial planet. Abundant CH4 might require a biological source, yet abundant CH4 also can arise from a crust and upper mantle more reduced than that of Earth. The range of characteristics of extrasolar rocky planets might far exceed that of the Solar System. Planetary size and mass are very important indicators of habitability and can be estimated in the mid-IR and potentially also in the visible to near-IR. Additional spectroscopic features merit study, for example, features created by other biosignature compounds in the atmosphere or on the surface and features due to Rayleigh scattering. In summary, we find that both the mid-IR and the visible to near-IR wavelength ranges offer valuable information regarding biosignatures and planetary properties; therefore both merit serious scientific consideration for TPF and Darwin.  相似文献   
604.
Performance of efficient single-person cardiopulmonary resuscitation (CPR) is vital to maintain cardiac and cerebral perfusion during the 2–4 min it takes for deployment of advanced life support during a space mission. The aim of the present study was to investigate potential differences in upper body muscle activity during CPR performance at terrestrial gravity (+1Gz) and in simulated microgravity (μG). Muscle activity of the triceps brachii, erector spinae, rectus abdominis and pectoralis major was measured via superficial electromyography in 20 healthy male volunteers. Four sets of 30 external chest compressions (ECCs) were performed on a mannequin. Microgravity was simulated using a body suspension device and harness; the Evetts–Russomano (ER) method was adopted for CPR performance in simulated microgravity. Heart rate and perceived exertion via Borg scores were also measured. While a significantly lower depth of ECCs was observed in simulated microgravity, compared with +1Gz, it was still within the target range of 40–50 mm. There was a 7.7% decrease of the mean (±SEM) ECC depth from 48 ± 0.3 mm at +1Gz, to 44.3 ± 0.5 mm during microgravity simulation (p < 0.001). No significant difference in number or rate of compressions was found between the two conditions. Heart rate displayed a significantly larger increase during CPR in simulated microgravity than at +1Gz, the former presenting a mean (±SEM) of 23.6 ± 2.91 bpm and the latter, 76.6 ± 3.8 bpm (p < 0.001). Borg scores were 70% higher post-microgravity compressions (17 ± 1) than post +1Gz compressions (10 ± 1) (p < 0.001). Intermuscular comparisons showed the triceps brachii to have significantly lower muscle activity than each of the other three tested muscles, in both +1Gz and microgravity. As shown by greater Borg scores and heart rate increases, CPR performance in simulated microgravity is more fatiguing than at +1Gz. Nevertheless, no significant difference in muscle activity between conditions was found, a result that is favourable for astronauts, given the inevitable muscular and cardiovascular deconditioning that occurs during space travel.  相似文献   
605.
    
The EXOSAT Medium Energy instrument has been used with the new HER6 mode to study the rapid variability of Cygnus X-1. It was found that the fluctuations in the higher energy band (5–14 keV) lagged behind those in the lower band (2–5 keV) by about 6 milliseconds. This confirms predictions of the inverse Compton model and gives an upper limit to the scale-size of the hot gas clouds.  相似文献   
606.
    
We present here the energy spectra relative to different geomagnetic regions as measured by the ALTEA (Anomalous Long Term Effects on Astronauts) detector in the International Space Station – USLab from August 2006 to July 2007.  相似文献   
607.
The original basis for the Lorentz transformations, and thus special relativity, was the assumption that the observed velocity of interaction of light with matter represents a unique velocity of the electromagnetic wave. This arbitrary decision is not borne out by Maxwell's theories or by any test that might prove that EM energy actually travels in a continuum of velocities. The second postulate as stated by Einstein does not deserve the status of a postulate, as it is at once overly restrictive and ultimately phenomenological-the nature of c is based on experimental measurement rather than on analysis of first principles. The radiation continuum model's (RCM) modified second postulate, however, says nothing about the actual propagation of EM energy, but only of the relative speed with which it must interact with matter to be detected. Utilizing this modified light principle we obtain an intuitive Galilean form invariance for Maxwell's equations. RCM places no upper limit on attainable velocities, and allows for the possibility of communications between humans or particles at speeds far in excess of c. This precludes many of the compatibility problems between the highly successful quantum mechanics and relativity theory  相似文献   
608.
    
The General AntiParticle Spectrometer (GAPS) is a novel approach for indirect dark matter searches that exploits cosmic antideuterons. GAPS complements existing and planned direct dark matter searches as well as other indirect techniques, probing a different and unique region of parameter space in a variety of proposed dark matter models. The GAPS method involves capturing antiparticles into a target material with the subsequent formation of an excited exotic atom. The exotic atom decays with the emission of atomic X-rays and pions from the nuclear annihilation, which uniquely identifies the captured antiparticle. This technique has been verified through the accelerator testing at KEK in 2004 and 2005. The prototype flight is scheduled from Hokkaido, Japan in 2011, preparatory for a long duration balloon flight from the Antarctic in 2014.  相似文献   
609.
    
It is well known that the solar wind can significantly affect high-latitude ionospheric dynamics. However, the effects of the solar wind on the middle- and low-latitude ionosphere are much less studied. In this paper, we report observations that large perturbations in the middle- and low-latitude ionosphere are well correlated with solar wind variations. In one event, a significant (20–30%) decrease of the midlatitude ionospheric electron density over a large latitudinal range was related to a sudden drop in the solar wind pressure and a northward turning of the interplanetary magnetic field, and the density decrease became larger at lower latitudes. In another event, periodic perturbations in the dayside equatorial ionospheric E × B drift and electrojet were closely associated with variations in the interplanetary electric field. Since the solar wind is always changing with time, it can be a very important and common source of ionospheric perturbations at middle- and low-latitudes. The relationship between solar wind variations and significant ionospheric perturbations has important applications in space weather.  相似文献   
610.
    
Summary From the extensive set of numerical calculations briefly described above, it seems apparent that rotating, isothermal gas clouds are unstable to fragmentation under a wide range of conditions. (Caution: This result for isothermal clouds cannot be generalized to all clouds, as is shown, for example, by Boss's analysis [these proceedings] of the stability of collapsing, adiabatic clouds.) It is of importance to note, however, that no fragmentation is apparent during a cloud's initial dynamic collapse toward a disk structure; rather it is the rotationally flattened disk/ring configuration that undergoes fragmentation. This is a considerably different picture of fragmentation than has been presented, for example, by Hoyle (1953).The degree of instability and the mode (ring vs. blob) of fragmentation is sensitive to , but insensitive to . The initial amplitude of a perturbation does not appear to be crucial--fragmentation should occur eventually even for low amplitude initial NAPs.Finally, it is of some interest to know what the properties are of the fragments that break out of these isothermal clouds. Before outlining these properties we emphasize that in this set of calculations we have specifically excited the m = 2 (binary) non-axisymmetric mode; hence we have in some sense suppressed the development of other modes and we have promoted the development of equal mass components in the binary systems. In these evolutions, a typical fragment contained 15% of the initial cloud mass; had a specific angular momentum 25–30% that of the original cloud; had a ratio of spin angular momentum to orbital angular momentum 0.2; and itself had a ratio of thermal to gravitational energy frag < 0.1. The formation of a binary system has therefore resulted in a conversion of some of the original cloud's spin angular momentum into orbital angular momentum, and has produced protostars with reduced specific angular momenta. It is also evident that each fragment is unstable to further collapse (having low ) under the isothermal assumptions imposed here.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号