全文获取类型
收费全文 | 3150篇 |
免费 | 8篇 |
国内免费 | 14篇 |
专业分类
航空 | 1671篇 |
航天技术 | 1080篇 |
综合类 | 9篇 |
航天 | 412篇 |
出版年
2018年 | 37篇 |
2017年 | 19篇 |
2016年 | 22篇 |
2014年 | 55篇 |
2013年 | 78篇 |
2012年 | 59篇 |
2011年 | 105篇 |
2010年 | 82篇 |
2009年 | 114篇 |
2008年 | 175篇 |
2007年 | 90篇 |
2006年 | 60篇 |
2005年 | 77篇 |
2004年 | 78篇 |
2003年 | 100篇 |
2002年 | 52篇 |
2001年 | 99篇 |
2000年 | 48篇 |
1999年 | 79篇 |
1998年 | 93篇 |
1997年 | 73篇 |
1996年 | 91篇 |
1995年 | 124篇 |
1994年 | 98篇 |
1993年 | 66篇 |
1992年 | 101篇 |
1991年 | 42篇 |
1990年 | 36篇 |
1989年 | 88篇 |
1988年 | 33篇 |
1987年 | 28篇 |
1986年 | 32篇 |
1985年 | 87篇 |
1984年 | 91篇 |
1983年 | 59篇 |
1982年 | 82篇 |
1981年 | 92篇 |
1980年 | 34篇 |
1979年 | 42篇 |
1978年 | 32篇 |
1977年 | 22篇 |
1976年 | 21篇 |
1975年 | 37篇 |
1974年 | 24篇 |
1973年 | 18篇 |
1972年 | 29篇 |
1969年 | 17篇 |
1968年 | 16篇 |
1967年 | 20篇 |
1966年 | 16篇 |
排序方式: 共有3172条查询结果,搜索用时 15 毫秒
991.
Global ena Image Simulations 总被引:2,自引:0,他引:2
Fok M.-C. Moore T.E. Wilson G.R. Perez J.D. Zhang X.X. Brandt P. C:Son Mitchell D.G. Roelof E.C. Jahn J.-M. Pollock C.J. Wolf R.A. 《Space Science Reviews》2003,109(1-4):77-103
The energetic neutral atom (ENA) images obtained by the ISEE and POLAR satellites pointed the way toward global imaging of the magnetospheric plasmas. The Imager for Magnetopause to Aurora Global Exploration (IMAGE) is the first mission to dedicate multiple neutral atom imagers: HENA, MENA and LENA, to monitor the ion distributions in high-, medium- and low-energy ranges, respectively. Since the start of science operation, HENA, MENA and LENA have been continuously sending down images of the ring current, ionospheric outflow, and magnetosheath enhancements from high pressure solar wind. To unfold multiple-dimensional (equal or greater than 3) plasma distributions from 2-dimensional images is not a trivial task. Comparison with simulated ENA images from a modeled ion distribution provides an important basis for interpretation of features in the observed images. Another approach is to develop image inversion methods to extract ion information from ENA images. Simulation studies have successfully reproduced and explained energetic ion drift dynamics, the transition from open to closed drift paths, and the magnetosheath response to extreme solar wind conditions. On the other hand, HENA has observed storm-time ion enhancement on the nightside toward dawn that differs from simple concepts but can be explained using more sophisticated models. LENA images from perigee passes reveal unexpected characteristics that now can be interpreted as evidence for a transient superthermal exospheric component that is gravitationally-influenced if not bound. In this paper, we will report ENA simulations performed during several IMAGE observed events. These simulations provide insight and explanations to the ENA features that were not readily understandable previously. 相似文献
992.
Spending company money wisely is a challenging job. The management approach used for selecting, executing, and applying company research projects is presented. Goals for research expenditures are discussed, together with methods of defining projects. The important interface between Government organization and company engineering and marketing is given. Optimum means of organizing and controlling selected research projects are covered, including management redirection when required. Approaches for maximizing creativity are also presented. All information presented is from actual experience and procedures now in use. 相似文献
993.
D. J. McComas E. R. Christian N. A. Schwadron N. Fox J. Westlake F. Allegrini D. N. Baker D. Biesecker M. Bzowski G. Clark C. M. S. Cohen I. Cohen M. A. Dayeh R. Decker G. A. de Nolfo M. I. Desai R. W. Ebert H. A. Elliott H. Fahr P. C. Frisch H. O. Funsten S. A. Fuselier A. Galli A. B. Galvin J. Giacalone M. Gkioulidou F. Guo M. Horanyi P. Isenberg P. Janzen L. M. Kistler K. Korreck M. A. Kubiak H. Kucharek B. A. Larsen R. A. Leske N. Lugaz J. Luhmann W. Matthaeus D. Mitchell E. Moebius K. Ogasawara D. B. Reisenfeld J. D. Richardson C. T. Russell J. M. Sokół H. E. Spence R. Skoug Z. Sternovsky P. Swaczyna J. R. Szalay M. Tokumaru M. E. Wiedenbeck P. Wurz G. P. Zank E. J. Zirnstein 《Space Science Reviews》2018,214(8):116
The Interstellar Mapping and Acceleration Probe (IMAP) is a revolutionary mission that simultaneously investigates two of the most important overarching issues in Heliophysics today: the acceleration of energetic particles and interaction of the solar wind with the local interstellar medium. While seemingly disparate, these are intimately coupled because particles accelerated in the inner heliosphere play critical roles in the outer heliospheric interaction. Selected by NASA in 2018, IMAP is planned to launch in 2024. The IMAP spacecraft is a simple sun-pointed spinner in orbit about the Sun-Earth L1 point. IMAP’s ten instruments provide a complete and synergistic set of observations to simultaneously dissect the particle injection and acceleration processes at 1 AU while remotely probing the global heliospheric interaction and its response to particle populations generated by these processes. In situ at 1 AU, IMAP provides detailed observations of solar wind electrons and ions; suprathermal, pickup, and energetic ions; and the interplanetary magnetic field. For the outer heliosphere interaction, IMAP provides advanced global observations of the remote plasma and energetic ions over a broad energy range via energetic neutral atom imaging, and precise observations of interstellar neutral atoms penetrating the heliosphere. Complementary observations of interstellar dust and the ultraviolet glow of interstellar neutrals further deepen the physical understanding from IMAP. IMAP also continuously broadcasts vital real-time space weather observations. Finally, IMAP engages the broader Heliophysics community through a variety of innovative opportunities. This paper summarizes the IMAP mission at the start of Phase A development. 相似文献
994.
J. Isbert J.H. Adams Jr. H.S. Ahn G.L. Bashindzhagyan K.E. Batkov M. Christl A.R. Fazely O. Ganel R.M. Gunashingha T.G. Guzik J. Chang K.C. Kim E.N. Kouznetsov Z.W. Lin M.I. Panasyuk A.D. Panov W.K.H. Schmidt E.S. Seo N.V. Sokolskaya John W. Watts J.P. Wefel J. Wu V.I. Zatsepin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment had a successful test flight and a science flight in 2000–01 and 2002–03 and an unsuccessful launch in 2005–06 from McMurdo, Antarctica, returning 16 and 19 days of flight data. ATIC is designed to measure the spectra of cosmic rays (protons to iron). The instrument is composed of a Silicon matrix detector followed by a carbon target interleaved with scintillator tracking layers and a segmented BGO calorimeter composed of 320 individual crystals totaling 18 radiation lengths to determine the particle energy. BGO (Bismuth Germanate) is an inorganic scintillation crystal and its light output depends not only on the energy deposited by particles but also on the temperature of the crystal. The temperature of balloon instruments during flight is not constant due to sun angle variations as well as differences in albedo from the ground. The change in output for a given energy deposit in the crystals in response to temperature variations was determined. 相似文献
995.
996.
997.
A. Kiraga Z. K
os V. N. Oraevsky S. A. Pulinets V. C. Dokukin E. P. Szuszczewicz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(12):143-146
Based on the dispersion relation of electron plasma, one can expect, that the waves excited in the frequency band (fp, fu=sqrt(fp*fp+fc*fc)) should persist in experimental spectra. For wave data from a spacecraft immersed in a cold plasma such an assumption may be misleading. In measurements performed on board the INTERCOSMOS-19, ACTIVE, APEX satellites and VC36.064CE rocket the most prominent spectral structure is centered around frequency fr fulfilling the relation fcrp and corresponds to resonant detection of Bernstein waves excited in the surrounding plasma by spacecraft systems. Input network mismatch at frequencies around fu significantly depresses natural plasma noise as well as that excited by the spacecraft. Plasma emissions in the band (fp, fu) are prominent if the electromagnetic excitation is preferential (topside sounders) or if the excitation introduces nonequilibrium components into the plasma e.g. particle beams or clouds. Experimental examples are presented and parameters of cold plasma spectra useful for electron density estimation are discussed. The application to other spacecraft-cold plasma configurations is suggested. 相似文献
998.
M. A. Hapgood T. G. Dimbylow D. C. Sutcliffe P. A. Chaizy P. S. Ferron P. M. Hill X. Y. Tiratay 《Space Science Reviews》1997,79(1-2):487-525
The Joint Science Operations Centre (JSOC) has been established to provide the operational interface between the Instrument Principal Investigators (PIs) and the European Space Operations Centre (ESOC). Its key task will be to merge inputs from the Cluster instrument teams and to generate the coordinated command schedule for operation of the scientific payload. In addition, it will collect and process data needed to plan those operations and will monitor the performance of the mission and individual instruments. This paper outlines the JSOC subsystems that have been built to carry out these tasks and highlights points of scientific or technical interest within these systems. 相似文献
999.
C. Scotto 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
An algorithm is proposed for evaluation of the probability of occurrence of an F1 layer or L condition, based on tables. Observations independent of the tables database are used for comparison between the estimated probability of occurrence, the formulation used at present in IRI, and the occurrence actually observed. The importance of the inclusion of L condition in the electron density profile model is shown. 相似文献
1000.