首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4953篇
  免费   7篇
  国内免费   16篇
航空   2532篇
航天技术   1802篇
综合类   14篇
航天   628篇
  2021年   23篇
  2019年   27篇
  2018年   66篇
  2017年   41篇
  2016年   37篇
  2014年   88篇
  2013年   119篇
  2012年   100篇
  2011年   161篇
  2010年   123篇
  2009年   200篇
  2008年   259篇
  2007年   120篇
  2006年   91篇
  2005年   127篇
  2004年   131篇
  2003年   169篇
  2002年   92篇
  2001年   174篇
  2000年   84篇
  1999年   148篇
  1998年   157篇
  1997年   119篇
  1996年   139篇
  1995年   185篇
  1994年   167篇
  1993年   99篇
  1992年   133篇
  1991年   60篇
  1990年   59篇
  1989年   124篇
  1988年   45篇
  1987年   55篇
  1986年   47篇
  1985年   138篇
  1984年   120篇
  1983年   99篇
  1982年   127篇
  1981年   155篇
  1980年   56篇
  1979年   63篇
  1978年   48篇
  1977年   32篇
  1976年   34篇
  1975年   50篇
  1974年   33篇
  1972年   39篇
  1969年   29篇
  1967年   24篇
  1966年   23篇
排序方式: 共有4976条查询结果,搜索用时 31 毫秒
981.
The Mercury Magnetopsheric Orbiter (MMO) is one of the spacecraft of the BepiColombo mission; the mission is scheduled for launch in 2014 and plans to revisit Mercury with modern instrumentation. MMO is to elucidate the detailed plasma structure and dynamics around Mercury, one of the least-explored planets in our solar system. The Mercury Plasma Particle Experiment (MPPE) on board MMO is a comprehensive instrument package for plasma, high-energy particle, and energetic neutral particle atom measurements. The Mercury Ion Analyzer (MIA) is one of the plasma instruments of MPPE, and measures the three dimensional velocity distribution of low-energy ions (from 5 eV to 30 keV) by using a top-hat electrostatic analyzer for half a spin period (2 s). By combining both the mechanical and electrical sensitivity controls, MIA has a wide dynamic range of count rates for the proton flux expected around Mercury, which ranges from 106 to 1012 cm−2 s−1 str−1 keV−1, in the solar wind between 0.3 and 0.47 AU from the sun, and in both the hot and cold plasma sheet of Mercury’s magnetosphere. The geometrical factor of MIA is variable, ranging from 1.0 × 10−7 cm2 str keV/keV for large fluxes of solar wind ions to 4.7 × 10−4 cm2 str keV/keV for small fluxes of magnetospheric ions. The entrance grid used for the mechanical sensitivity control of incident ions also work to significantly reduce the contamination of solar UV radiation, whose intensity is about 10 times larger than that around Earth’s orbit.  相似文献   
982.
In the frame of the 2009 Mars Science Laboratory (MSL) mission a new sample preparation system (SPS) compatible with gas chromatography–mass spectrometry (GC–MS) has been developed for the in situ analysis of complex organic molecules in the Martian soil. The goal is to detect, if they exist, some of the key compounds that play an important role in life on Earth including carboxylic acids, amino acids and nucleobases.  相似文献   
983.
In this work a methodology for inferring water cloud macro and microphysical properties from nighttime MODIS imagery is developed. This method is based on the inversion of a theoretical radiative transfer model that simulates the radiances detected in each of the sensor infrared bands. To accomplish this inversion, an operational technique based on Artificial Neural Networks (ANNs) is proposed, whose main characteristic is the ability to retrieve cloud properties much faster than conventional methods. Furthermore, a detailed study of input data is performed to avoid different sources of errors that appear in several MODIS infrared channels. Finally, results of applying the proposed method are compared with in-situ measurements carried out during the DYCOMS-II field experiment.  相似文献   
984.
Almost 10 years of solar submillimeter observations have shown new aspects of solar activity, such as the presence of rapid solar spikes associated with the launch of coronal mass ejections and an increasing submillimeter spectral component in flares. We analyse the singular microwave–submillimeter spectrum of an M class solar flare on 20 December, 2002. Flux density observations measured by Sun patrol telescopes and the Solar Submillimeter Telescope are used to build the radio spectrum, which is fitted using Ramaty’s code. At submillimeter frequencies the spectrum shows a component different from the microwave classical burst. The fitting is achieved proposing two homogeneous sources of emission. This theoretical fitting is in agreement with differential precipitation through a magnetically asymmetric loop or set of loops. From a coronal magnetic field model we infer an asymmetric magnetic structure at the flare location. The model proposed to quantify the differential precipitation rates due to the asymmetry results in a total precipitation ratio Q2/Q1≈104–105, where Q1(Q2) represents the total precipitation in the loop foot with the high (low) magnetic field intensity. This ratio agrees with the electron total number ratio of the two sources proposed to fit the radio spectrum.  相似文献   
985.
Plasmaspheric density structures have been studied since the discovery of the plasmasphere in the late 1950s. But the advent of the Cluster and Image missions in 2000 has added substantially to our knowledge of density structures, thanks to the new capabilities of those missions: global imaging with Image and four-point in situ measurements with Cluster. The study of plasma sources and losses has given new results on refilling rates and erosion processes. Two-dimensional density images of the plasmasphere have been obtained. The spatial gradient of plasmaspheric density has been computed. The ratios between H+, He+ and O+ have been deduced from different ion measurements. Plasmaspheric plumes have been studied in detail with new tools, which provide information on their morphology, dynamics and occurrence. Density structures at smaller scales have been revealed with those missions, structures that could not be clearly distinguished before the global images from Image and the four-point measurements by Cluster became available. New terms have been given to these structures, like “shoulders”, “channels”, “fingers” and “crenulations”. This paper reviews the most relevant new results about the plasmaspheric plasma obtained since the start of the Cluster and Image missions.  相似文献   
986.
Knowledge of the elemental composition of the interstellar gas is of fundamental importance for understanding galactic chemical evolution. In addition to spectroscopic determinations of certain element abundance ratios, measurements of the composition of interstellar pickup ions and Anomalous Cosmic Rays (ACRs) have provided the principal means to obtain this critical information. Recent advances in our understanding of particle acceleration processes in the heliosphere and measurements by the Voyagers of the energy spectra and composition of energetic particles in the heliosheath provide us with another means of determining the abundance of the neutral components of the local interstellar gas. Here we compare the composition at the termination shock of six elements obtained from measurements of (a) pickup ions at ~5 AU, (b) ACRs in the heliosphere at ~70 AU, and (c) energetic particles as well as (d) ACRs in the heliosheath at ~100 AU. We find consistency among these four sets of derived neutral abundances. The average interstellar neutral densities at the termination shock for H, N, O, Ne and Ar are found to be 0.055±0.021 cm?3, (1.44±0.45)×10?5 cm?3, (6.46±1.89)×10?5 cm?3, (8.5±3.3)×10?6 cm?3, and (1.08±0.49)×10?7 cm?3, respectively, assuming the He density is 0.0148±0.002 cm?3.  相似文献   
987.
Properties of the heliospheric interface, a complex product of an interaction between charged and neutral particles and magnetic fields in the heliosphere and surrounding Circumheliospheric Medium, are far from being fully understood. Recent Voyager spacecraft encounters with the termination shock and their observations in the heliosheath revealed multiple energetic particle populations and noticeable spatial asymmetries not accounted for by the classic theories. Some of the challenges still facing space physicists include the origin of anomalous cosmic rays, particle acceleration downstream of the termination shock, the role of interstellar magnetic fields in producing the global asymmetry of the interface, the influence of charge exchange and interstellar neutral atoms on heliospheric plasma flows, and the signatures of solar magnetic cycle in the heliosheath. These and other outstanding issues are reviewed in this joint report of working groups 4 and 6.  相似文献   
988.
A nanosatellite to investigate the brightness oscillations of massive luminous stars by differential photometry is currently developed by a Canadian/Austrian team within the BRITE (Bright Target Explorer) project. The first Austrian satellite funded by the Austrian Space Program, called TUGSAT-1/BRITE-Austria, builds on the space heritage of the most successful Canadian CanX-2 and MOST missions. The satellite makes use of recent advances in miniaturized attitude determination and control systems. Precision three-axis stabilization by small reaction wheels and a star tracker provides the necessary accuracy for the photometer telescope to the arcminute level. This will provide to the astronomers photometric data of the most massive stars with unprecedented precision; data which cannot be obtained from the ground due to limitations imposed by the terrestrial atmosphere.The paper describes the spacecraft characteristics and the ground infrastructure being established in support of the BRITE mission which will consist of a constellation of up to four nearly identical satellites allowing to carry out long-term observation of stars (magnitude +3.5) not only with respect to brightness variations, but also in different spectrum ranges.  相似文献   
989.
John C. Mankins   《Acta Astronautica》2009,65(9-10):1208-1215
Systems that depend upon the application of new technologies inevitably face three major challenges during development: performance, schedule and budget. Technology research and development (R&D) programs are typically advocated based on argument that these investments will substantially reduce the uncertainty in all three of these dimensions of project management. However, if early R&D is implemented poorly, then the new system developments that plan to employ the resulting advanced technologies will suffer from cost overruns, schedule delays and the steady erosion of initial performance objectives. It is often critical for senior management to be able to determine which of these two paths is more likely—and to respond accordingly. The challenge for system and technology managers is to be able to make clear, well-documented assessments of technology readiness and risks, and to do so at key points in the life cycle of the program.Several approaches have been used to evaluate technology maturity and risk in order to better anticipate later system development risks. The “technology readiness levels” (TRLs), developed by NASA, are one discipline-independent, programmatic figure of merit (FOM) that allows more effective assessment of, and communication regarding the maturity of new technologies. Another broadly used management tool is of the “risk matrix”, which depends upon a graphical representation of uncertainty and consequences. However, for the most part these various methodologies have had no explicit interrelationship.This paper will examine past uses of current methods to improve R&D outcomes and will highlight some of the limitations that can arise. In this context, a new concept for the integration of the TRL methodology, and the concept of the “risk matrix” will be described. The paper will conclude with observations concerning prospective future directions for the important new concept of integrated “technology readiness and risk assessments”.  相似文献   
990.
Technology readiness assessments: A retrospective   总被引:1,自引:0,他引:1  
John C. Mankins   《Acta Astronautica》2009,65(9-10):1216-1223
The development of new system capabilities typically depends upon the prior success of advanced technology research and development efforts. These systems developments inevitably face the three major challenges of any project: performance, schedule and budget. Done well, advanced technology programs can substantially reduce the uncertainty in all three of these dimensions of project management. Done poorly, or not at all, and new system developments suffer from cost overruns, schedule delays and the steady erosion of initial performance objectives. It is often critical for senior management to be able to determine which of these two paths is more likely—and to respond accordingly. The challenge for system and technology managers is to be able to make clear, well-documented assessments of technology readiness and risks, and to do so at key points in the life cycle of the program.In the mid 1970s, the National Aeronautics and Space Administration (NASA) introduced the concept of “technology readiness levels” (TRLs) as a discipline-independent, programmatic figure of merit (FOM) to allow more effective assessment of, and communication regarding the maturity of new technologies. In 1995, the TRL scale was further strengthened by the articulation of the first definitions of each level, along with examples (J. Mankins, Technology readiness levels, A White Paper, NASA, Washington, DC, 1995. [1]). Since then, TRLs have been embraced by the U.S. Congress’ General Accountability Office (GAO), adopted by the U.S. Department of Defense (DOD), and are being considered for use by numerous other organizations. Overall, the TRLs have proved to be highly effective in communicating the status of new technologies among sometimes diverse organizations.This paper will review the concept of “technology readiness assessments”, and provide a retrospective on the history of “TRLs” during the past 30 years. The paper will conclude with observations concerning prospective future directions for the important discipline of technology readiness assessments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号