首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5643篇
  免费   32篇
  国内免费   24篇
航空   2808篇
航天技术   1968篇
综合类   13篇
航天   910篇
  2021年   36篇
  2019年   33篇
  2018年   79篇
  2017年   55篇
  2016年   54篇
  2015年   36篇
  2014年   108篇
  2013年   149篇
  2012年   132篇
  2011年   194篇
  2010年   136篇
  2009年   209篇
  2008年   283篇
  2007年   153篇
  2006年   118篇
  2005年   150篇
  2004年   143篇
  2003年   173篇
  2002年   112篇
  2001年   179篇
  2000年   97篇
  1999年   133篇
  1998年   156篇
  1997年   116篇
  1996年   167篇
  1995年   202篇
  1994年   186篇
  1993年   105篇
  1992年   145篇
  1991年   68篇
  1990年   60篇
  1989年   142篇
  1988年   55篇
  1987年   51篇
  1986年   63篇
  1985年   167篇
  1984年   169篇
  1983年   111篇
  1982年   136篇
  1981年   173篇
  1980年   50篇
  1979年   60篇
  1978年   57篇
  1977年   38篇
  1975年   56篇
  1974年   44篇
  1973年   36篇
  1972年   48篇
  1969年   35篇
  1967年   36篇
排序方式: 共有5699条查询结果,搜索用时 15 毫秒
71.
One of the Skylab experiments dealt with motion sickness, comparing susceptibility in the workshop aloft with susceptibility preflight and postflight. Tests were conducted on and after mission-day 8 (MD 8) by which time the astronauts were adapted to working conditions. Stressful accelerations were generated by requiring the astronauts, with eyes covered, to execute standardized head movements (front, back, left, and right) while in a chair that could be rotated at angular velocities up to 30 rpm. The selected endpoint was either 150 discrete head movements or a very mild level of motion sickness. In all rotation experiments aloft, the five astronauts tested (astronaut 1 did not participate) were virtually symptom free, thus demonstrating lower susceptibility aloft than in preflight and postflight tests on the ground when symptoms were always elicited. Inasmuch as the eyes were covered and the canalicular stimuli were the same aloft as on the ground, it would appear that lifting the stimulus to the otolith organs due to gravity was an important factor in reducing susceptibility to motion sickness even though the transient stimuli generated under the test conditions were substantial and abnormal in pattern. Some of the astronauts experienced motion sickness under operational conditions aloft or after splashdown, but attention is centered chiefly on symptoms manifested in zero gravity. None of the Skylab-II crew (astronauts 1 to 3) was motion sick aloft. Astronaut 6 of the Skylab-III crew (astronauts 4 to 6) experienced motion sickness within an hour after transition into orbit; this constitutes the earliest such diagnosis on record under orbital flight conditions. The eliciting stimuli were associated with head and body movements, and astronaut 6 obtained relief by avoiding such movements and by one dose of the drug combination 1-scopolamine 0.35 mg + d-amphetamine 5.0 mg. All three astronauts of Skylab-III experienced motion sickness in the workshop where astronaut 6 was most susceptible and astronaut 4, least susceptible. The higher susceptibility of SL-III crewmen in the workshop, as compared with SL-II crewmen, may be attributable to the fact that they were based in the command module less than one-third as long as SL-II crewmen. The unnatural movements, often resembling acrobatics, permitted in the open spaces of the workshop revealed the great potentialities in weightlessness for generating complex interactions of abnormal or unusual vestibular and visual stimuli. Symptoms were controlled by body restraint and by drugs, but high susceptibility to motion sickness persisted for 3 days and probably much longer; restoration was complete on MD 7. From the foregoing statements it is clear that on and after MD 8 the susceptibility of SL-II and SL-III crewmen to motion sickness under experimental conditions was indistinguishable. The role played by the acquisition of adaptation effects prior to MD 8 is less clear and is a subject to be discussed.  相似文献   
72.
Several studies in animals over the past decade have shown that prolonged exposures to pressures within the range 226 mm Hg to 160 mm Hg (30,000 to 37,500 ft) are likely to lead to brain damage. This often results in neurological and behavioural disturbance, which may be subtle and reversible or gross and ultimately fatal. The appearance of these impairments is often delayed until several hours or even days after exposure. Immediate survival does not necessarily ensure recovery. In contrast, decompression to pressures below 160 mm Hg or above 226 mm Hg are unlikely to have adverse effects if the exposure is survived. The most probable outcomes of such decompressions are death or uneventful recovery.  相似文献   
73.
If life ever existed, or still exists, on Mars, its record is likely to be found in minerals formed by, or in association with, microorganisms. An important concept regarding interpretation of the mineralogical record for evidence of life is that, broadly defined, life perturbs disequilibria that arise due to kinetic barriers and can impart unexpected structure to an abiotic system. Many features of minerals and mineral assemblages may serve as biosignatures even if life does not have a familiar terrestrial chemical basis. Biological impacts on minerals and mineral assemblages may be direct or indirect. Crystalline or amorphous biominerals, an important category of mineralogical biosignatures, precipitate under direct cellular control as part of the life cycle of the organism (shells, tests, phytoliths) or indirectly when cell surface layers provide sites for heterogeneous nucleation. Biominerals also form indirectly as by-products of metabolism due to changing mineral solubility. Mineralogical biosignatures include distinctive mineral surface structures or chemistry that arise when dissolution and/or crystal growth kinetics are influenced by metabolic by-products. Mineral assemblages themselves may be diagnostic of the prior activity of organisms where barriers to precipitation or dissolution of specific phases have been overcome. Critical to resolving the question of whether life exists, or existed, on Mars is knowing how to distinguish biologically induced structure and organization patterns from inorganic phenomena and inorganic self-organization. This task assumes special significance when it is acknowledged that the majority of, and perhaps the only, material to be returned from Mars will be mineralogical.  相似文献   
74.
The European Space Agency (ESA) contribution to the International Space Station (ISS) goes much beyond the delivery of hardware like the Columbus Laboratory, its payloads and the Automated Transfer Vehicles. ESA Astronauts will be members of the ISS crew. ESA, according to its commitments as ISS international partner, will be responsible to provide training on its elements and payloads to all ISS crewmembers and medical support for ESA astronauts. The European Astronaut Centre (EAC) in Cologne has developed over more than a decade into the centre of expertise for manned space activities within ESA by contributing to a number of important co-operative spaceflight missions. This role will be significantly extended for ISS manned operations. Apart from its support to ESA astronauts and their onboard operations, EAC will have a key role in training all ISS astronauts on ESA elements and payloads. The medical support of ISS crew, in particular of ESA astronauts has already started. This paper provides an overview on status and further plans in building up this homebase function for ESA astronauts and on the preparation towards Training Readiness for ISS crew training at EAC, Cologne. Copyright 2001 by the European Space Agency. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Released to IAF/IAA/AIAA to publish in all forms.  相似文献   
75.
Abrashkin  V. I.  Volkov  M. V.  Egorov  A. V.  Zaitsev  A. S.  Kazakova  A. E.  Sazonov  V. V. 《Cosmic Research》2003,41(6):593-612
We compare the results of two methods used to determine the angular velocity of the Foton-12 satellite and the low-frequency component of microaccelerations onboard it. The first method is based on reconstruction of the satellite's rotational motion using the data of onboard measurements of the strength of the Earth's magnetic field. The motion (time dependence of the orientation parameters and angular velocity) was found from the condition of best approximation of the measurement data by the functions calculated along the solutions to equations of attitude motion of the satellite. The solutions found were used to calculate the quasistatic component of microaccelerations at certain points of the satellite, in particular, at the point of location of an accelerometer of the QSAM system. Filtration of the low-frequency component of the angular velocity and microacceleration from the data of measurements by a sensor of angular velocity and by the accelerometer of this system served as a second method. The filtration was made using the discrete Fourier series. A spectral analysis of the functions representing the results of determining the angular velocity and microacceleration by both methods is performed. Comparing the frequencies and amplitudes of the harmonic component of these functions allowed us to estimate the accuracy of measurements made by the QSAM system in the low-frequency range.  相似文献   
76.
In order to help assess the risk to astronauts due to the long-term exposure to the natural radiation environment in space, an understanding of how the primary radiation field is changed when passing through shielding and tissue materials must be obtained. One important aspect of the change in the primary radiation field after passing through shielding materials is the production of secondary particles from the breakup of the primary. Neutrons are an important component of the secondary particle field due to their relatively high biological weighting factors, and due to their relative abundance, especially behind thick shielding scenarios. Because of the complexity of the problem, the estimation of the risk from exposure to the secondary neutron field must be handled using calculational techniques. However, those calculations will need an extensive set of neutron cross section and thicktarget neutron yield data in order to make an accurate assessment of the risk. In this paper we briefly survey the existing neutron-production data sets that are applicable to the space radiation transport problem, and we point out how neutron production from protons is different than neutron production from heavy ions. We also make comparisons of one the heavy-ion data sets with Boltzmann-Uehling-Uhlenbeck (BUU) calculations.  相似文献   
77.
In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program.  相似文献   
78.
The primary objective of the Laser Interferometer Space Antenna (LISA) mission is to detect and observe gravitational waves from massive black holes and galactic binaries in the frequency range 10−4 to 10−1 Hz. This low-frequency range is inaccessible to ground-based interferometers because of the unshieldable background of local gravitational noise and because ground-based interferometers are limited in length to a few km. LISA is an ESA cornerstone mission and recently had a system study (Ref. 1) carried out by a consortium led by Astrium, which confirmed the basic configuration for the payload with only minor changes, and provided detailed concepts for the spacecraft and mission design. The study confirmed the need for a drag-free technology demonstration mission to develop the inertial sensors for LISA, before embarking on the build of the flight sensors. With a technology demonstration flight in 2005, it would be possible to carry out LISA as a joint ESA-NASA mission with a launch by 2010 subject to the funding programmatics. The baseline for LISA is three disc-like spacecraft each of which consist of a science module which carries the laser interferometer payload (two in each science module) and a propulsion module containing an ion drive and the hydrazine thrusters of the AOCS. The propulsion module is used for the transfer from earth escape trajectory provided by the Delta II launch to the operational orbit. Once there the propulsion module is jettisoned to reduce disturbances on the payload. Detailed analysis of thermal and gravitational disturbances, a model of the drag-free control and of the interferometer operation confirm that the strain sensitivity of the interferometer will be achieved.  相似文献   
79.
The results of processing and interpreting the data of joint Russian–French experiments for studying the heat and mass transfer in near-critical fluids are presented. The experiments were carried out with the ALICE-1 instrument during an orbital flight of the Mirstation from September 30 to October 2, 1995 [1]. For such fluids with a point-like source of heat, when they are placed in the field of uncontrolled inertial accelerations of the spacecraft, the influence of thermovibrational and thermogravitational mechanisms of convection on the propagation of the region of optical irregularity is investigated. It is shown that, near the thermodynamic critical point, local heating of the medium leads to generation of either intense thermogravitational convection or averaged vibroconvective flow, depending on the frequency of variations of the microaccelerations. The structure and characteristics of discovered motions are studied. The results of numerical simulations are presented that confirm the conclusion about a possibility of generation of an averaged convective flow of a vibrational type by the high-frequency component of microaccelerations.  相似文献   
80.
The considerable evidence that Mars once had a wetter, more clement, environment motivates the search for past or present life on that planet. This evidence also suggests the possibility of restoring habitable conditions on Mars. While the total amounts of the key molecules--carbon dioxide, water, and nitrogen--needed for creating a biosphere on Mars are unknown, estimates suggest that there may be enough in the subsurface. Super greenhouse gases, in particular, perfluorocarbons, are currently the most effective and practical way to warm Mars and thicken its atmosphere so that liquid water is stable on the surface. This process could take approximately 100 years. If enough carbon dioxide is frozen in the South Polar Cap and absorbed in the regolith, the resulting thick and warm carbon dioxide atmosphere could support many types of microorganisms, plants, and invertebrates. If a planet-wide martian biosphere converted carbon dioxide into oxygen with an average efficiency equal to that for Earth's biosphere, it would take > 100,000 years to create Earth-like oxygen levels. Ethical issues associated with bringing life to Mars center on the possibility of indigenous martian life and the relative value of a planet with or without a global biosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号