首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5105篇
  免费   6篇
  国内免费   16篇
航空   2530篇
航天技术   1798篇
综合类   18篇
航天   781篇
  2021年   28篇
  2019年   28篇
  2018年   77篇
  2017年   44篇
  2016年   45篇
  2014年   100篇
  2013年   140篇
  2012年   106篇
  2011年   176篇
  2010年   137篇
  2009年   207篇
  2008年   269篇
  2007年   126篇
  2006年   110篇
  2005年   131篇
  2004年   129篇
  2003年   168篇
  2002年   86篇
  2001年   170篇
  2000年   84篇
  1999年   132篇
  1998年   149篇
  1997年   122篇
  1996年   138篇
  1995年   184篇
  1994年   164篇
  1993年   100篇
  1992年   135篇
  1991年   52篇
  1990年   57篇
  1989年   129篇
  1988年   58篇
  1987年   46篇
  1986年   57篇
  1985年   145篇
  1984年   148篇
  1983年   91篇
  1982年   138篇
  1981年   145篇
  1980年   48篇
  1979年   48篇
  1978年   56篇
  1977年   28篇
  1976年   27篇
  1975年   58篇
  1974年   39篇
  1973年   32篇
  1972年   39篇
  1969年   27篇
  1967年   25篇
排序方式: 共有5127条查询结果,搜索用时 93 毫秒
91.
In the past, one of the major problems in performing scientific investigations in space has been the high cost of developing, integrating, and transporting scientific experiments into space. The limited resources of unmanned spacecraft, coupled with the requirements for completely automated operations, was another factor contributing to the high costs of scientific research in space. In previous space missions after developing, integrating and transporting costly experiments into space and obtaining successful data, the experiment facility and spacecraft have been lost forever, because they could not be returned to earth. The objective of this paper is to present how the utilization of the Spacelab System will result in cost benefits to the scientific community, and significantly reduce the cost of space operations from previous space programs.The following approach was used to quantify the cost benefits of using the Spacelab System to greatly reduce the operational costs of scientific research in space. An analysis was made of the series of activities required to combine individual scientific experiments into an integrated payload that is compatible with the Space Transportation System (STS). These activities, including Shuttle and Spacelab integration, communications and data processing, launch support requirements, and flight operations were analyzed to indicate how this new space system, when compared with previous space systems, will reduce the cost of space research. It will be shown that utilization of the Spacelab modular design, standard payload interfaces, optional Mission Dependent Equipment (MDE), and standard services, such as the Experiment Computer Operating System (ECOS), allow the user many more services than previous programs, at significantly lower costs. In addition, the missions will also be analyzed to relate their cost benefit contributions to space scientific research.The analytical tools that are being developed at MSFC in the form of computer programs that can rapidly analyze experiment to Spacelab interfaces will be discussed to show how these tools allow the Spacelab integrator to economically establish the payload compatibility of a Spacelab mission.The information used in this paper has been assimilated from the actual experience gained in integrating over 50 highly complex, scientific experiments that will fly on the Spacelab first and second missions. In addition, this paper described the work being done at the Marshall Space Flight Center (MSFC) to define the analytical integration tools and techniques required to economically and efficiently integrate a wide variety of Spacelab payloads and missions. The conclusions reached in this study are based on the actual experience gained at MSFC in its roles of Spacelab integration and mission managers for the first three Spacelab missions. The results of this paper will clearly show that the cost benefits of the Spacelab system will greatly reduce the costs and increase the opportunities for scientific investigation from space.  相似文献   
92.
In a number of flights, cosmonauts and astronauts have experienced aggravation of their health status and general condition in the initial hours and days in a weightless environment. One of the trigger mechanisms for the onset of these unfavourable conditions at the start of space flight is a redistribution of body fluids and a blood shift towards the head. To ensure controlled hypohydration as a countermeasure to the deleterious effects of 0-g and to investigate the feasibility to control adaptation, six cosmonauts were administered lasix once a day during the first 3 days of a mission. All data of the experiment (correction test, questionnaire, hematocrit) were recorded on a special form in the logbook and transmitted to the control centre for processing. Results showed that the diuretic weakened the sensation of discomfort and improved the cosmonauts' general condition. Objective indices of the correction test indicate an increased work ability of cosmonauts. After hypohydration, circulating plasma volumes in the group were reduced by 6.8 + 1.0% on average.  相似文献   
93.
Fluid and electrolyte shifts occuring during human spaceflight have been reported and investigated at the level of blood, cardio-vascular and renal responses. Very few data were available concerning the cerebral fluid and electrolyte adaptation to microgravity, even in animal models. It is the reason why we developed several studies focused on the effects of spaceflight (SLS-1 and SLS-2 programs, carried on NASA STS 40 and 56 missions, which were 9- and 14-day flights, respectively), on structural and functional features of choroid plexuses, organs which secrete 70–90 % of cerebrospinal fluid (CSF) and which are involved in brain homeostasis. Rats flown aboard space shuttles were sacrificed either in space (SLS-2 experiment, on flight day 13) or 4–8 hours after landing (SLS-1 and SLS-2 experiments). Quantitative autoradiography performed by microdensitometry and image analysis, showed that lateral and third ventricle choroid plexuses from rats flown for SLS-1 experiment demonstrated an increased number (about x 2) of binding sites to natriuretic peptides (which are known to be involved in mechanisms regulating CSF production). Using electron microscopy and immunocytochemistry, we studied the cellular response of choroid plexuses, which produce cerebrospinal fluid (CSF) in brain lateral, third and fourth ventricles. We demonstrated that spaceflight (SLS-2 experiment, inflight samples) induces changes in the choroidal cell structure (apical microvilli, kinocilia organization, vesicle accumulation) and protein distribution or expression (carbonic anhydrase II, water channels,…). These observations suggested a loss of choroidal cell polarity and a decrease in CSF secretion. Hindlimb-suspended rats displayed similar choroidal changes. All together, these results support the hypothesis of a modified CSF production in rats during long-term (9, 13 or 14 days) adaptations to microgravity.  相似文献   
94.
Smirnova  N. V.  Lyakhov  A. N.  Setzer  Yu. I.  Osepian  A. P.  Meng  C.-I.  Smith  R.  Stenbaek-Nielsen  H. C. 《Cosmic Research》2004,42(3):210-218
Spatial distributions of the electron density in the latitude range 60°–90° N were calculated on the basis of a physical model of the E and lower Fregions of the high-latitude ionosphere using statistical models of auroral proton and electron precipitation. It is shown that precipitating protons can play the key role in the ionization of the Eregion in the dusk and midnight sectors of the auroral oval. However, quantitative estimates of the contribution of protons to the ionization depend on the used statistical models of electron precipitation. Comparison of the electron density profiles calculated for two incoherent scatter radars, EISCAT (Tromsö) and ESR (Svalbard), for simultaneous precipitation of electrons and protons and for electron precipitation only show that the influence of protons is the most significant in the dusk sector over the EISCAT radar and in the midnight sector over the ESR radar. The results presented indicate the need to take protons into account when radar data are used to derive precipitating electron spectra.  相似文献   
95.
96.
Map-based navigation in outdoor terrain lacking man-made structures or other highly distinctive landmarks can produce severe localization problems. This paper presents an approach to navigation which implements high level geometric reasoning and matching strategies based on those used by skilled human navigators. This approach, which is demonstrated on a real example involving imagery of mountainous terrain obtained with a video camera and USGS map data, is designed to avoid many of the pitfalls occurring when an attempt is made to navigate by modeling the environment mathematically. It exploits feature attributes which cannot be easily expressed quantitatively but are central to the successful human navigation process.  相似文献   
97.
To meet the significant increase in EVA demand to support assembly and operations of the International Space Station (ISS), NASA and industry have improved the current Shuttle Extravehicular Mobility Unit (EMU), or "space suit", configuration to meet the unique and specific requirements of an orbital-based system. The current Shuttle EMU was designed to be maintained and serviced on the ground between frequent Shuttle flights. ISS will require the EMUs to meet increased EVAs out of the Shuttle Orbiter and to remain on orbit for up to 180 days without need for regular return to Earth for scheduled maintenance or refurbishment. Ongoing Shuttle EMU improvements have increased reliability, operational life and performance while minimizing ground and on-orbit maintenance cost and expendable inventory. Modifications to both the anthropomorphic mobility elements of the Space Suit Assembly (SSA) as well as to the Primary Life Support System (PLSS) are identified and discussed. This paper also addresses the status of on-going Shuttle EMU improvements and summarizes the approach for increasing interoperability of the U.S. and Russian space suits to be utilized aboard the ISS.  相似文献   
98.
The National Space Research Institute (INPE) is developing the first Brazilian Scientific Microsatellite (SACI-1) based on the vanguard technology and on the experience acquired through projects developed by Brazilian Space Program. The SACI-1 is a 750km polar orbit satellite. The spacecraft will combine spin stabilization with geomagnetic control and has a total mass of 60 kg. The overall dimensions are 640×470×470 mm. The SACI-1 satellite shall be launched together with CBERS (China-Brazil Earth Resource Satellite). Its platform is being designed for multiple mission applications. The Brazilian Academy of Sciences has selected four scientific payloads that characterize the mission. The scientific experiments are: ORCAS (Solar and Anomalous Cosmic Rays Observation in the Magnetosphere), PLASMEX (Study of Plasma Bubbles), FOTSAT (Airglow Photometer), and MAGNEX (Geomagnetic Experiment).  相似文献   
99.
The lunar orbit is presently expanding due, we believe, to tidal friction, i.e. the attraction of the moon for the tides it raises on the rotating Earth. The Moon may therefore have been significantly closer to the Earth in the distant past, a point of great interest to those studying the lunar origin. This work presents the results of the integration of the equations which govern the rates of change of the lunar orbit elements and the angular momentum of the Earth. Results are presented for both the past and future of the Earth-Moon system.  相似文献   
100.
When discussing problems related to medical service in space flight, particular attention should be given to the specific living conditions and changes associated with space flight. In disease and injury, surgery can be provided only after conservative therapy has failed. In this context gnotobiological chambers allowing surgery in aseptic conditions seem promising. A portable set of interchangeable surgical tools should be made of light-weight alloys that can be readily sterilized. Electroanalgesia in combination with auriculoacupuncture as well as peridureal anesthesia may be used as they allow normal operations in autonomous space flight conditions. Changes in the sympatho-adrenal and kallikrein-kinin systems, as well as water-electrolyte balance, should be taken into account in developing methods and means of medical service in critical situations. Special attention should be given to the prevention and treatment of brain edema in view of weightlessness-induced cephalad fluid shifts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号