首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5734篇
  免费   19篇
  国内免费   22篇
航空   2588篇
航天技术   2185篇
综合类   19篇
航天   983篇
  2021年   54篇
  2019年   40篇
  2018年   120篇
  2017年   82篇
  2016年   74篇
  2015年   26篇
  2014年   126篇
  2013年   165篇
  2012年   156篇
  2011年   229篇
  2010年   148篇
  2009年   259篇
  2008年   318篇
  2007年   168篇
  2006年   146篇
  2005年   175篇
  2004年   178篇
  2003年   199篇
  2002年   124篇
  2001年   184篇
  2000年   128篇
  1999年   140篇
  1998年   158篇
  1997年   125篇
  1996年   153篇
  1995年   197篇
  1994年   178篇
  1993年   93篇
  1992年   144篇
  1991年   49篇
  1990年   51篇
  1989年   127篇
  1988年   41篇
  1987年   41篇
  1986年   58篇
  1985年   172篇
  1984年   133篇
  1983年   107篇
  1982年   133篇
  1981年   154篇
  1980年   45篇
  1979年   33篇
  1978年   37篇
  1977年   36篇
  1976年   29篇
  1975年   26篇
  1974年   34篇
  1973年   25篇
  1970年   27篇
  1969年   24篇
排序方式: 共有5775条查询结果,搜索用时 0 毫秒
291.
    
Results of the 2.5–5 micron spectroscopic channel of the IKS instrument on Vega are reported and the data reduction process is described. H2O and CO2 molecules have been detected with production rates of 1030 s−1 and 1.5 1028 s−1 respectively. Emission features between 3.3 and 3.7 microns are tentatively attributed to CH - bearing compounds - CO is marginally detected with a mixing ratio CO/H2O 0.2. OH emission and H2O - ice absorption might also be present in the spectra.  相似文献   
292.
293.
A computer simulation was carried out to evaluate the basic characteristics of a Δ E×E cosmic ray telescope consisting of 23 solid state detectors including 3 position sensitive detectors with large effective area. Based on the simulation, the geometric factor of the telescope is deduced to be as large as 22.5 cm2sr, almost independent of charge and energy concerned. The energy ranges to be covered by the telescope are, for example, 18–98 MeV/n for Li and 56–339 MeV/n for Fe. By analyzing simulated data, the mass resolution for iron in the overall energy range covered by the telescope is estimated as about 0.22 amu in standard deviation. The expected counting rates and mass-histograms are simulated for Galactic cosmic rays and solar energetic particles.  相似文献   
294.
  总被引:4,自引:0,他引:4  
The ultraviolet (UV) environment of Mars has been investigated to gain an understanding of the variation of exposure throughout a Martian year, and link this flux to biological effects and possible survival of organisms at the Martian surface. To gain an idea of how the solar UV radiation varies between different regions, including planned landing sites of two future Mars surface missions, we modelled the total solar UV surface flux throughout one Martian year for two different dust scenarios. To understand the degree of solar UV stress on micro-organisms and/or molecules essential for life on the surface of Mars, we also calculated the biologically effective dose (BED) for T7 and Uracil in relevant wavelength regions at the Martian surface as a function of season and latitude, and discuss the biological survival rates in the presence of Martian solar UV radiation. High T7/Uracil BED ratios indicate that even at high latitudes where the UV flux is significantly reduced, the radiation environment is still hostile for life due to the persisting UV-C component of the flux.  相似文献   
295.
The results of the comprehensive numerical analysis for dynamics of intrachamber processes that appear at nozzleless solid propellant rocket engine (SPRE) actuation are presented. A complete cycle of rocket engine operation is analyzed. We solve a conjugate problem involving the igniter actuation; heating, ignition and following combustion of a solid propellant charge; a combustion product flow in the combustion chamber; depressurization of the combustion chamber, and the subsequent motion of the rocket engine blank; variation of the combustion surface geometry at the expense of the gradual and nonuniform burnout of solid propellant web.  相似文献   
296.
    
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20RS (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 RS every 2–3 h (every ∼10 min from ∼20 RS). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
297.
298.
A recursive track-before-detect algorithm, producing potentially large signal-to-noise ratio (SNR) gains under realizable conditions, is described. The basic relation has the form of a linear, constant-coefficient difference equation with a unity magnitude damping factor. Known as recursive moving-target-indication (RMTI), this procedure adapts easily to digital processing and achieves SNR gains comparable to those from other robust track-before-detect algorithms. Examples are given to demonstrate the performance of the moving target indicator (MTI) procedure  相似文献   
299.
This paper deals with the technical features of designing an information-controlling system to prevent critical operating conditions of the helicopter flight, a technique for evaluating its effectiveness, analysis and synthesis of the measurement channels, forming of warning signals, and information support of the crew in abnormal situations.  相似文献   
300.
Mende  S.B.  Heetderks  H.  Frey  H.U.  Stock  J.M.  Lampton  M.  Geller  S.P.  Abiad  R.  Siegmund  O.H.W.  Habraken  S.  Renotte  E.  Jamar  C.  Rochus  P.  Gerard  J.-C.  Sigler  R.  Lauche  H. 《Space Science Reviews》2000,91(1-2):287-318
Two FUV Spectral imaging instruments, the Spectrographic Imager (SI) and the Geocorona Photometer (GEO) provide IMAGE with simultaneous global maps of the hydrogen (121.8 nm) and oxygen 135.6 nm components of the terrestrial aurora and with observations of the three dimensional distribution of neutral hydrogen in the magnetosphere (121.6 nm). The SI is a novel instrument type, in which spectral separation and imaging functions are independent of each other. In this instrument, two-dimensional images are produced on two detectors, and the images are spectrally filtered by a spectrograph part of the instrument. One of the two detectors images the Doppler-shifted Lyman- while rejecting the geocoronal `cold Ly-, and another detector images the OI 135.6 nm emission. The spectrograph is an all-reflective Wadsworth configuration in which a grill arrangement is used to block most of the cold, un-Doppler-shifted geocoronal emission at 121.567 nm. The SI calibration established that the upper limit of transmission at cold geocoronal Ly- is less than 2%. The measured light collecting efficiency was 0.01 and 0.008 cm2 at 121.8 and at 135.6 nm, respectively. This is consistent with the size of the input aperture, the optical transmission, and the photocathode efficiency. The expected sensitivity is 1.8×10–2 and 1.3×10–2 counts per Rayleigh per pixel for each 5 s viewing exposure per satellite revolution (120 s). The measured spatial resolution is better than the 128×128 pixel matrix over the 15°×15° field of view in both wavelength channels. The SI detectors are photon counting devices using the cross delay line principle. In each detector a triple stack microchannel plate (MCP) amplifies the photo-electronic charge which is then deposited on a specially configured anode array. The position of the photon event is measured by digitizing the time delay between the pulses detected at each end of the anode structures. This scheme is intrinsically faster than systems that use charge division and it has a further advantage that it saturates more gradually at high count rates. The geocoronal Ly- is measured by a three-channel photometer system (GEO) which is a separate instrument. Each photometer has a built in MgF2 lens to restrict the field of view to one degree and a ceramic electron multiplier with a KBr photocathode. One of the tubes is pointing radially outward perpendicular to the axis of satellite rotation. The optic of the other two subtend 60° with the rotation axis. These instruments take data continuously at 3 samples per second and rely on the combination of satellite rotation and orbital motion to scan the hydrogen cloud surrounding the earth. The detective efficiencies (effective quantum efficiency including windows) of the three tubes at Ly- are between 6 and 10%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号