首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
航空   12篇
航天技术   11篇
综合类   2篇
航天   2篇
  2021年   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2006年   1篇
  2004年   1篇
  2001年   1篇
  1997年   1篇
  1978年   1篇
  1972年   2篇
  1968年   1篇
排序方式: 共有27条查询结果,搜索用时 359 毫秒
11.
A multispectral imager has been developed for a rendezvous mission with the near-Earth asteroid, 433 Eros. The Multi-Spectral Imager (MSI) on the Near-Earth Asteroid Rendezvous (NEAR) spacecraft uses a five-element refractive optical telescope, has a field of view of 2.93 × 2.25°, a focal length of 167.35 mm, and has a spatial resolution of 16.1 × 9.5 m at a range of 100 km. The spectral sensitivity of the instrument spans visible to near infrared wavelengths, and was designed to provide insight into the nature and fundamental properties of asteroids and comets. Seven narrow band spectral filters were chosen to provide multicolor imaging and to make comparative studies with previous observations of S asteroids and measurements of the characteristic absorption in Fe minerals near 1 µm. An eighth filter with a much wider spectral passband will be used for optical navigation and for imaging faint objects, down to visual magnitude of +10.5. The camera has a fixed 1 Hz frame rate and the signal intensities are digitized to 12 bits. The detector, a Thomson-CSF TH7866A Charge-Coupled Device, permits electronic shuttering which effectively varies the dynamic range over an additional three orders of magnitude. Communication with the NEAR spacecraft occurs via a MIL-STD-1553 bus interface, and a high speed serial interface permits rapid transmission of images to the spacecraft solid state recorder. Onboard image processing consists of a multi-tiered data compression scheme. The instrument was extensively tested and calibrated prior to launch; some inflight calibrations have already been completed. This paper presents a detailed overview of the Multi-Spectral Imager and its objectives, design, construction, testing and calibration.  相似文献   
12.
13.
14.
The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter’s far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno’s other remote sensing instruments and used to place in situ measurements made by Juno’s particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter’s magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS.  相似文献   
15.
乳腺癌是癌症中引起妇女死亡的首要因素。本文采用绿色量子点作为荧光显色材料,建立了一种用于早期乳腺癌诊断的原位成像技术。利用生物素标记的抗HER2/neu抗体与乳腺癌细胞表面表达的HER2结合的特点,然后用偶联绿色量子点的链霉亲和素作为荧光检测标记物,与HER2抗原抗体复合物中的生物素发生特异结合,检测出乳腺癌细胞的存在。结果表明,在荧光显微镜下用绿色量子点原位显色的乳腺癌细胞,相对有机染料组显色亮度增强,故检测灵敏度有所提高。  相似文献   
16.
The Gravity Advanced Package is an instrument composed of an electrostatic accelerometer called MicroSTAR and a rotating platform called Bias Rejection System. It aims at measuring with no bias the non-gravitational acceleration of a spacecraft. It is envisioned to be embarked on an interplanetary spacecraft as a tool to test the laws of gravitation.  相似文献   
17.
Over the last years, Carbon Nanotubes (CNT) drew interdisciplinary attention. Regarding space technologies a variety of potential applications were proposed and investigated. However, no complex data on the behaviour and degradation process of carbon nanotubes under space environment exist. Therefore, it is necessary to investigate the performance of these new materials in space environment and to revaluate the application potential of CNTs in space technologies.Hence, CiREX (Carbon Nanotubes – Resistance Experiment) was developed as a part of a student project. It is a small and compact experiment, which is designed for CubeSat class space satellites. These are a class of nanosatellites with a standardized size and shape. The CiREX design, electrical measurements and the satellites interfaces will be discussed in detail. CiREX is the first in-situ space material experiment for CNTs.To evaluate the data obtained from CiREX, ground validation tests are mandatory. As part of an extensive test series the behaviour of CNTs under solar ultra violet light (UV) and vacuum ultraviolet light (VUV) was examined. Single-walled carbon nanotubes (SWNT), multi-walled carbon nanotubes (MWNT) and MWNT/resin composite (ME) were exposed to different light sources. After the exposure, the defect density was investigated with Raman spectroscopy. There is a clear indication that UV and VUV light can increase the defect density of untreated CNTs and influence the electrical behaviour.  相似文献   
18.
With the development of wireless sensor network(WSN)applications in intelligent monitoring,additional support for the low power consumption wireless nodes can be provided by piezoceramics that harvest vibrational energy.First,we describe the effects of stimulation variations on piezoceramics and the energy harvesting circuit set-up.Two types of piezoceramics were stimulated at different frequencies and amplitudes to obtain the power output characteristics.Then,the energy harvesting circuit was studied and coupled with the piezoceramics.A double peak phenomenon was found in energy harvesting using a hard piezoceramic which gave a direct proof that the nonlinearity of the piezo constant should be considered in application.Finally,energy storage and output were studied and analyzed.Electronic components for the WSN were recommended according to the output power and the application.The results will give an instruction for piezoceramic energy harvesting under various stress amplitudes on its implementation.  相似文献   
19.
Recent developments have seen a trend towards larger constellations of spacecraft, with some proposals featuring constellations of more than 10.000 satellites. While similar concepts for large constellations already existed in the past, traditional satellite deployments hardly ever feature groups of more than 100 satellites. This trend towards considerably larger satellite numbers originates from non-traditional design and operations of spacecraft by non-traditional space companies. The evolution in the space sector, precipitated by new players, is often referred to as “Space 4.0” or “New Space”. It necessitates a rethinking of the way satellites and satellite constellations are planned, designed, and operated. New operational paradigms are needed to enable automatic, optimal task definition, and scheduling in a holistic approach.This is the second of two companion papers that investigate the operations of distributed satellite systems. This second article investigates the classification of distributed satellite systems and evaluates commercial tools for automated spacecraft operations, whereas the first article performed a survey of conventional and “new space”operations of spacecraft constellations.Classification metrics for constellations are derived and evaluated with respect to their informative value concerning the operation, the automation, and the scalability of the constellation. The proposed classification system is applied to the Dove and RapidEye constellation and allows for a comparison between the presented automation approaches. Commercial tools for automated spacecraft operations are evaluated for several mission task elements, such as orbit control, orbit maintenance, and collision avoidance. Subsequently, the trends, benefits, and standardization needs for operational automation are identified.  相似文献   
20.
We present a concept for a challenging in situ science mission to a primitive, binary near-Earth asteroid. A sub-400-kg spacecraft would use solar electric propulsion to rendezvous with the C-class binary asteroid (175706) 1996 FG3. A campaign of remote observations of both worlds would be followed by landing on the ∼1 km diameter primary to perform in situ measurements. The total available payload mass would be around 34 kg, allowing a wide range of measurement objectives to be addressed. This mission arose during 2004 from the activities of the ad-hoc Small Bodies Group of the DLR-led Planetary Lander Initiative. Although the particular mission scenario proposed here was not studied further per se, the experience was carried over to subsequent European asteroid mission studies, including first LEONARD and now the Marco Polo near-Earth asteroid sample return proposal for ESA’s Cosmic Vision programme. This paper may thus be of interest as much for insight into the life cycle of mission proposals as for the concept itself.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号