首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  国内免费   1篇
航空   14篇
航天技术   3篇
航天   10篇
  2018年   1篇
  2017年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1998年   2篇
  1996年   1篇
  1994年   2篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1981年   2篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
11.
Over the past several years Satellites International has developed an integrated suite of satellite sub-systems and small satellite buses. The sub-systems include S-band communications, attitude sensing and control, power conversion and distribution, and on-board data handling. They are inherently modular and readily adaptable to different satellite configurations, a concept known as semi-standardisation. This concept has been adopted by two generic low-cost buses: MicroSIL for satellites in the mass range 40–80kg; and MiniSIL for satellites in the range 100–500kg. Their architecture is based on the semi-standard sub-systems, but easily modified to utilise sub-systems from other manufacturers. They can support all stabilisation methods including spinning, 3-axis control and gravity gradient and are adaptable to a wide variety of missions including Earth resources, scientific, communications and technology demonstration. The Company also manufactures a range of low cost ground support equipment and complete ground stations to complement the space-borne systems.  相似文献   
12.
The cell averaging LOG/CFAR receiver is a special implementation of a constant-false-alarm-rate (CFAR) receiver in which the noise level estimate is derived from a set of contiguous time samples of the output of a logarithmic (LOG) detector as obtained from a tapped delay line. This CFAR receiver is capable of operating over a larger dynamic range of noise levels than a conventional cell averaging CFAR receiver, but with somewhat poorer detectability. The performance in stationary Gaussian noise of the cell averaging LOG/CFAR receiver with no post-detection integration is determined in this paper. For a small number of reference noise samples, results were obtained by a Monte Carlo simulation using the technique of importance sampling. For a large number of reference noise samples, a second moment analysis gave the desired results. Both these results can be summarized in the following simple formula, NLOG = 1.65NLIN - 0.65, which relates the number of reference samples required by each of the two receivers for equivalent performance. Thus, for the cell averaging LOG/CFAR receiver to give the same detection performance as the conventional cell averaging CFAR receiver, the number of reference noise samples has to be increased by up to 65 percent.  相似文献   
13.
Calculations to predict the radiation environment for spacecraft in low earth orbit sometimes ignore the contribution from secondary radiation products. However, the contribution of secondaries, particularly neutrons, on heavy spacecraft or in planetary bodies can be of concern for biological systems. The Shuttle Activation Monitor (SAM) and Cosmic Radiation Effects and Activation Monitor (CREAM) experiments provide valuable data on secondary (as well as primary) radiation effects. Comparisons have been made between induced activity from flight-exposed samples, induced activity in a ground-irradiated sample, and Monte Carlo-derived predictions with and without secondaries. These comparisons show that for a flight-exposed sample, predictions which omit the secondary contribution result in a spectrum that is too low by a factor of 2. The addition of the secondaries results in a predicted spectrum that closely matches the measured data.  相似文献   
14.
At the Millstone Hill station the Incoherent Scatter Radar (ISR) and a Digisonde 256 are simultaneously operating. Some characteristic true heights determined by both instruments are compared with each other, possible reasons for observed difference are indicated.  相似文献   
15.
In order to meet the growing global requirement for affordable missions beyond Low Earth Orbit, two types of platform are under design at the Surrey Space Centre. The first platform is a derivative of Surrey's UoSAT-12 minisatellite, launched in April 1999 and operating successfully in-orbit. The minisatellite has been modified to accommodate a propulsion system capable of delivering up to 1700 m/s delta-V, enabling it to support a wide range of very low cost missions to LaGrange points, Near-Earth Objects, and the Moon. A mission to the Moon - dubbed “MoonShine” - is proposed as the first demonstration of the modified minisatellite beyond LEO. The second platform - Surrey's Interplanetary Platform - has been designed to support missions with delta-V requirements up to 3200 m/s, making it ideal for low cost missions to Mars and Venus, as well as Near Earth Objects (NEOs) and other interplanetary trajectories. Analysis has proved mission feasibility, identifying key challenges in both missions for developing cost-effective techniques for: spacecraft propulsion; navigation; autonomous operations; and a reliable safe mode strategy. To reduce mission risk, inherently failure resistant lunar and interplanetary trajectories are under study. In order to significantly reduce cost and increase reliability, both platforms can communicate with low-cost ground stations and exploit Surrey's experience in autonomous operations. The lunar minisatellite can provide up to 70 kg payload margin in lunar orbit for a total mission cost US$16–25 M. The interplanetary platform can deliver 20 kg of scientific payload to Mars or Venus orbit for a mission cost US$25–50 M. Together, the platforms will enable regular flight of payloads to the Moon and interplanetary space at unprecedented low cost. This paper outlines key systems engineering issues for the proposed Lunar Minisatellite and interplanetary Platform Missions, and describes the accommodation and performance offered to planetary payloads.  相似文献   
16.
Primitive photosynthetic microorganisms, either dormant or dead, may remain today on the martian surface, akin to terrestrial cyanobacteria surviving endolithically in martian analog sites on Earth such as the Antarctic Dry Valleys and the Atacama Desert. Potential markers of martian photoautotrophs include the red edge of chlorophyll reflectance spectra or fluorescence emission from systems of light-harvesting pigments. Such biosignatures, however, would be modified and degraded by long-term exposure to ionizing radiation from the unshielded cosmic ray flux onto the martian surface. In this initial study into this issue, three analytical techniques--absorbance, reflectance, and fluorescence spectroscopy--were employed to determine the progression of the radiolytic destruction of cyanobacteria. The pattern of signal loss for chlorophyll reflection and fluorescence from several biomolecules is characterized and quantified after increasing exposures to ionizing gamma radiation. This allows estimation of the degradation rates of cyanobacterial biosignatures on the martian surface and the identification of promising detectable fluorescent break-down products.  相似文献   
17.
The high flux of cosmic rays onto the unshielded surface of Mars poses a significant hazard to the survival of martian microbial life. Here, we determined the survival responses of several bacterial strains to ionizing radiation exposure while frozen at a low temperature characteristic of the martian near-subsurface. Novel psychrotolerant bacterial strains were isolated from the Antarctic Dry Valleys, an environmental analogue of the martian surface, and identified by 16S rRNA gene phylogeny as representatives of Brevundimonas, Rhodococcus, and Pseudomonas genera. These isolates, in addition to the known radioresistant extremophile Deinococcus radiodurans, were exposed to gamma rays while frozen on dry ice (-79°C). We found D. radiodurans to exhibit far greater radiation resistance when irradiated at -79°C than was observed in similar studies performed at higher temperatures. This greater radiation resistance has important implications for the estimation of potential survival times of microorganisms near the martian surface. Furthermore, the most radiation resistant of these Dry Valley isolates, Brevundimonas sp. MV.7, was found to show 99% 16S rRNA gene similarity to contaminant bacteria discovered in clean rooms at both Kennedy and Johnson Space Centers and so is of prime concern to efforts in the planetary protection of Mars from our lander probes. Results from this experimental irradiation, combined with previous radiation modeling, indicate that Brevundimonas sp. MV.7 emplaced only 30?cm deep in martian dust could survive the cosmic radiation for up to 100,000 years before suffering 10? population reduction.  相似文献   
18.
Fermentations performed under microgravity conditions may be used in future long duration space missions for recycling expendable life support materials. These fermentations will differ from similar fermentations performed at one gravity in the manner in which gas transfer in the fermentor is carried out.  相似文献   
19.
In the first part of this paper we obtain an X-ray luminosity function for Seyfert 1 nuclei using the optical luminosity function due to Veran (1979) and the 2 keV X-ray data primarily due to Kriss et al. (1980). This is compared with the 2–10 keV X-ray luminosity function due to Piccinotti et al. (1981) which was determined using a complete X-ray survey. In the second part of the paper we use this last function to predict X-ray source counts for Seyferts and compare these with the Einstein deep X-ray survey observations of a field in Pavo.  相似文献   
20.
Photodynamic therapy (PDT), in which tissues may be rendered fatally light-sensitive represents a relatively novel treatment for cancer and other disorders such as cardiovascular disease. It offers significant application to disease control in an isolated environment such as space flight. In studying PDT in the laboratory, low energy lasers such as HeNe lasers are used to activate the photosensitized cellular target. A major problem associated with these studies is that events occurring during actual exposure of the target cells to the system cannot be examined in real time. In this study HeLa cells were photosensitized and photodynamic activation was accomplished using the scanning microbeam from a confocal laser scanning microscope. This form of activation allowed for simultaneous photoactivation and observation and facilitated the recording of events at a microscopic level during photoactivation. Effects of photodynamic activation on the target cells were monitored using the fluorophores rhodamine 123 and ethidium homodimer-1. Potential applications of these forms of analyses to space medicine and cell biology are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号