全文获取类型
收费全文 | 4715篇 |
免费 | 8篇 |
国内免费 | 23篇 |
专业分类
航空 | 2256篇 |
航天技术 | 1778篇 |
综合类 | 18篇 |
航天 | 694篇 |
出版年
2021年 | 30篇 |
2019年 | 29篇 |
2018年 | 74篇 |
2017年 | 45篇 |
2016年 | 45篇 |
2014年 | 96篇 |
2013年 | 133篇 |
2012年 | 100篇 |
2011年 | 152篇 |
2010年 | 115篇 |
2009年 | 202篇 |
2008年 | 258篇 |
2007年 | 109篇 |
2006年 | 112篇 |
2005年 | 118篇 |
2004年 | 126篇 |
2003年 | 152篇 |
2002年 | 84篇 |
2001年 | 156篇 |
2000年 | 87篇 |
1999年 | 115篇 |
1998年 | 133篇 |
1997年 | 101篇 |
1996年 | 120篇 |
1995年 | 149篇 |
1994年 | 149篇 |
1993年 | 85篇 |
1992年 | 100篇 |
1991年 | 45篇 |
1990年 | 52篇 |
1989年 | 111篇 |
1988年 | 50篇 |
1987年 | 45篇 |
1986年 | 52篇 |
1985年 | 175篇 |
1984年 | 127篇 |
1983年 | 91篇 |
1982年 | 110篇 |
1981年 | 158篇 |
1980年 | 50篇 |
1979年 | 32篇 |
1978年 | 50篇 |
1977年 | 37篇 |
1976年 | 24篇 |
1975年 | 51篇 |
1974年 | 32篇 |
1973年 | 39篇 |
1972年 | 35篇 |
1970年 | 31篇 |
1969年 | 37篇 |
排序方式: 共有4746条查询结果,搜索用时 18 毫秒
961.
Sarles F.W. Stanley A.G. Roberge J.K. Godfrey B.W. 《IEEE transactions on aerospace and electronic systems》1973,(6):921-924
For direct measurement of the integrated radiation dose experienced in Earth synchronous orbit, p-i-n diodes were flown as radiation dosimeters on LES-6. The diode, which has a lifetime of 10-4 seconds in the intrinsic region, was originally developed as a neutron dosimeter, but can detect 1-MeV electron fluences as low as 1013 e·cm-2. Observations over three years in orbit are presented. 相似文献
962.
Space radiation dosimetry with active detections for the scientific program of the second Bulgarian cosmonaut on board the Mir space station. 总被引:1,自引:0,他引:1
J V Dachev TsPMatviichuk YuN Semkova R T Koleva B Boichev P Baynov N A Kanchev P Lakov P T Ivanov YaJTomo V M Petrov V I Redko V I Kojarinov R Tykva 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(10):247-251
A dosimetry-radiometry system has been developed at the Space Research Institute of the Bulgarian Academy of Science to measure the fluxes and dose rates on the flight of the second Bulgarian cosmonaut. The dosimetry system is designed for monitoring the different space radiations, such as solar cosmic rays, galactic cosmic rays and trapped particles in the earth radiation belts. The system consists of a battery operated small size detector unit and a "read-write" and telemetry microcomputer unit. The sensitivity of the instrument (3.67 x 10(-8) rad/pulse) permits high resolution measurements of the flux and dose rate along the track of the Mir space station. We report our initial results for the period of the flight between the 7th and 17th June 1988. 相似文献
963.
We describe the formation of hot intergalactic gas along with baryonic remnants in galaxy halos. In this scenario, the mass and metallicity of the hot intracluster and intragroup gas relates directly to the production of baryonic remnants during the collapse of galactic halos. We construct a schematic but self-consistent model in which early bursts of star formation lead to a large remnant population in the halo, and to the outflow of stellar ejecta into the halo and ultimately the Local Group. We consider local as well as high redshift constraints on this scenario. This study suggests that the microlensing objects in the Galactic halo may predominantly be 0.5M white dwarfs, assuming that the initial mass function for early star formation favored the formation of intermediate mass stars with m 1M. However, the bulk of the baryonic dark matter in this scenario is associated with the ejecta of the white dwarf progenitors, and resides in the hot intergalactic medium. 相似文献
964.
T.P. Dachev B. Tomov Yu. Matviichuk Pl. Dimitrov N. Bankov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The paper presents observation of relativistic electrons. Data are collected by the Radiation Risk Radiometer-Dosimeters (R3D) B2/B3 modifications during the flights of Foton M2/M3 satellites in 2005 and 2007 as well as by the R3DE instrument at the European Technology Exposure Facility (EuTEF) on the Columbus External Payload Adaptor at the International Space Station (ISS) in the period February 20 – April 28, 2008. On the Foton M2/M3 satellites relativistic electrons are observed more frequently than on the ISS because of higher (62.8°) inclination of the orbit. At both Foton satellites the usual duration of the observations are a few minutes long. On the ISS the duration usually is about 1 min or less. The places of observations of high doses due to relativistic electrons are distributed mainly at latitudes above 50° geographic latitude in both hemispheres on Foton M2/M3 satellites. A very high maximum is found in the southern hemisphere at longitudinal range 0°–60°E. At the ISS the maximums are observed between 45° and 52° geographic latitude in both hemispheres mainly at longitudes equatorward from the magnetic poles. The measured absolute maximums of dose rates generated by relativistic electrons are found to be as follows: 304 μGy h−1 behind 1.75 g cm−2 shielding at Foton M2, 2314 μGy h−1 behind 0.71 g cm−2 shielding at Foton M3 and 19,195 μGy h−1 (Flux is 8363 cm−2 s−1) behind les than 0.4 g cm−2 shielding at ISS. 相似文献
965.
The Radio Plasma Imager investigation on the IMAGE spacecraft 总被引:1,自引:0,他引:1
Reinisch B.W. Haines D.M. Bibl K. Cheney G. Galkin I.A. Huang X. Myers S.H. Sales G.S. Benson R.F. Fung S.F. Green J.L. Boardsen S. Taylor W.W.L. Bougeret J.-L. Manning R. Meyer-Vernet N. Moncuquet M. Carpenter D.L. Gallagher D.L. Reiff P. 《Space Science Reviews》2000,91(1-2):319-359
Radio plasma imaging uses total reflection of electromagnetic waves from plasmas whose plasma frequencies equal the radio sounding frequency and whose electron density gradients are parallel to the wave normals. The Radio Plasma Imager (RPI) has two orthogonal 500-m long dipole antennas in the spin plane for near omni-directional transmission. The third antenna is a 20-m dipole along the spin axis. Echoes from the magnetopause, plasmasphere and cusp will be received with the three orthogonal antennas, allowing the determination of their angle-of-arrival. Thus it will be possible to create image fragments of the reflecting density structures. The instrument can execute a large variety of programmable measuring options at frequencies between 3 kHz and 3 MHz. Tuning of the transmit antennas provides optimum power transfer from the 10 W transmitter to the antennas. The instrument can operate in three active sounding modes: (1) remote sounding to probe magnetospheric boundaries, (2) local (relaxation) sounding to probe the local plasma frequency and scalar magnetic field, and (3) whistler stimulation sounding. In addition, there is a passive mode to record natural emissions, and to determine the local electron density, the scalar magnetic field, and temperature by using a thermal noise spectroscopy technique. 相似文献
966.
Ning Hsing Lu Eisenstein B.A. 《IEEE transactions on aerospace and electronic systems》1984,(6):830-834
An adaptive threshold detector to test for the presence of a weak signal in additive non-Gaussian noise of unknown level is discussed. The detector consists of a locally optimum detector, a noise level estimator, and a decision device. The detection threshold is made adaptive according to the information provided by the noise level estimator in order to keep a fixed false-alarm probability. Asymptotic performance characteristics are obtained indicating relationships among the basic system parameters such as the reference noise sample size and the underlying noise statistics. It is shown that, as the reference noise sample size is made sufficiently large, the adaptive threshold detector attains the performance of a corresponding locally optimum detector for detecting the weak signal were the noise level known. 相似文献
967.
The Goddard Experiment Package will measure the ultraviolet spectral emittance of stars and nebulae. It has a spectral resolution of 2 ? in the 1050-? to 4000-? band. The telescope has a 38-inch clear aperture and automatically reduces the spectral data to digital form. Guidance accuracy is 1 of second arc. 相似文献
968.
Y. Lin S.F. Martin O. Engvold L.H.M. Rouppe van der Voort M. van Noort 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
High resolution Hα images and magnetograms (0.2 arc s) of an active region were obtained in alternating time series at 42 s cadences using the Swedish 1-m Solar Telescope on 2004 August 21. The Hα filtergrams reveal an active region filament and surges consisting of thread-like structures which have widths similar to the widths of chromospheric fibrils, both recorded down to the resolution limit in the best images. All observed structures in the active region appear highly dynamic. Fibrils show counterstreaming strongly resembling the counterstreaming threads in filaments. 相似文献
969.
P. Willis J.C. Ries N.P. Zelensky L. Soudarin H. Fagard E.C. Pavlis F.G. Lemoine 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
For Precise Orbit Determination of altimetry missions, we have computed a data set of DORIS station coordinates defined for specific time intervals called DPOD2005. This terrestrial reference set is an extension of ITRF2005. However, it includes all new DORIS stations and is more reliable, as we disregard stations with large velocity formal errors as they could contaminate POD computations in the near future. About 1/4 of the station coordinates need to be defined as they do not appear in the original ITRF2005 realization. These results were verified with available DORIS and GPS results, as the integrity of DPOD2005 is almost as critical as its accuracy. Besides station coordinates and velocities, we also provide additional information such as periods for which DORIS data should be disregarded for specific DORIS stations, and epochs of coordinate and velocity discontinuities (related to either geophysical events, equipment problem or human intervention). The DPOD model was tested for orbit determination for TOPEX/Poseidon (T/P), Jason-1 and Jason-2. Test results show DPOD2005 offers improvement over the original ITRF2005, improvement that rapidly and significantly increases after 2005. Improvement is also significant for the early T/P cycles indicating improved station velocities in the DPOD2005 model and a more complete station set. Following 2005 the radial accuracy and centering of the ITRF2005-original orbits rapidly degrades due to station loss. 相似文献
970.
F. Bagenal A. Adriani F. Allegrini S. J. Bolton B. Bonfond E. J. Bunce J. E. P. Connerney S. W. H. Cowley R. W. Ebert G. R. Gladstone C. J. Hansen W. S. Kurth S. M. Levin B. H. Mauk D. J. McComas C. P. Paranicas D. Santos-Costa R. M. Thorne P. Valek J. H. Waite P. Zarka 《Space Science Reviews》2017,213(1-4):219-287
In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets. 相似文献