全文获取类型
收费全文 | 2528篇 |
免费 | 7篇 |
国内免费 | 6篇 |
专业分类
航空 | 1187篇 |
航天技术 | 918篇 |
综合类 | 9篇 |
航天 | 427篇 |
出版年
2021年 | 18篇 |
2019年 | 16篇 |
2018年 | 59篇 |
2017年 | 36篇 |
2016年 | 39篇 |
2015年 | 12篇 |
2014年 | 55篇 |
2013年 | 89篇 |
2012年 | 55篇 |
2011年 | 85篇 |
2010年 | 72篇 |
2009年 | 118篇 |
2008年 | 139篇 |
2007年 | 58篇 |
2006年 | 63篇 |
2005年 | 64篇 |
2004年 | 64篇 |
2003年 | 85篇 |
2002年 | 43篇 |
2001年 | 92篇 |
2000年 | 48篇 |
1999年 | 65篇 |
1998年 | 69篇 |
1997年 | 66篇 |
1996年 | 64篇 |
1995年 | 87篇 |
1994年 | 86篇 |
1993年 | 41篇 |
1992年 | 50篇 |
1991年 | 15篇 |
1990年 | 24篇 |
1989年 | 51篇 |
1988年 | 32篇 |
1987年 | 20篇 |
1986年 | 29篇 |
1985年 | 74篇 |
1984年 | 70篇 |
1983年 | 42篇 |
1982年 | 69篇 |
1981年 | 67篇 |
1980年 | 17篇 |
1979年 | 10篇 |
1978年 | 31篇 |
1977年 | 12篇 |
1975年 | 24篇 |
1974年 | 16篇 |
1973年 | 16篇 |
1972年 | 16篇 |
1970年 | 9篇 |
1969年 | 12篇 |
排序方式: 共有2541条查询结果,搜索用时 18 毫秒
131.
G. I. Pugacheva A. A. Gusev U. B. Jayanthi I. M. Martin W. N. Spjeldvik 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,28(12):1759-1762
We report a study of the numeric solution to the diffusive transport equation for energetic protons magnetically trapped in the Earth's equatorial magnetosphere. The analysis takes into account the pertinent physical processes in this region, including deceleration of protons by Coulomb collisional interactions with free and bound electrons, the charge exchange process, cosmic ray albedo neutron decay source, and electric and magnetic radial diffusion. These results were obtained using the Finite Element Method with magnetic moment and geomagnetic L-shell as free variables. Steady state boundary conditions were imposed at L=1 as zero distribution function and at L=7 with proton distribution function extracted from ATS 6 satellite observations. The FEM-code yields unidirectional proton flux in the energy range of 0.1–1000 MeV at the equatorial top of the geomagnetic lines, and the results are found to be in satisfactorily agreement with the empirical NASA AP-8 model proton flux within the energy range of 0.5–100 MeV. Below 500 keV, the empirical AP-8 model proton fluxes are several orders of magnitude greater than those computed with the FEM-code at L<3. This discrepancy is difficult to explain by uncertainties of boundary spectrum parameters or transport coefficients. 相似文献
132.
V D Kern S Bhattacharya R N Bowman F M Donovan C Elland T F Fahlen B Girten M Kirven-Brooks K Lagel G B Meeker O Santos 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(5):1023-1030
During the construction phase of the International Space Station (ISS), early flight opportunities have been identified (including designated Utilization Flights, UF) on which early science experiments may be performed. The focus of NASA's and other agencies' biological studies on the early flight opportunities is cell and molecular biology; with UF-1 scheduled to fly in fall 2001, followed by flights 8A and UF-3. Specific hardware is being developed to verify design concepts, e.g., the Avian Development Facility for incubation of small eggs and the Biomass Production System for plant cultivation. Other hardware concepts will utilize those early research opportunities onboard the ISS, e.g., an Incubator for sample cultivation, the European Modular Cultivation System for research with small plant systems, an Insect Habitat for support of insect species. Following the first Utilization Flights, additional equipment will be transported to the ISS to expand research opportunities and capabilities, e.g., a Cell Culture Unit, the Advanced Animal Habitat for rodents, an Aquatic Facility to support small fish and aquatic specimens, a Plant Research Unit for plant cultivation, and a specialized Egg Incubator for developmental biology studies. Host systems (Figure 1A, B: see text), e.g., a 2.5 m Centrifuge Rotor (g-levels from 0.01-g to 2-g) for direct comparisons between g and selectable g levels, the Life Sciences Glovebox for contained manipulations, and Habitat Holding Racks (Figure 1B: see text) will provide electrical power, communication links, and cooling to the habitats. Habitats will provide food, water, light, air and waste management as well as humidity and temperature control for a variety of research organisms. Operators on Earth and the crew on the ISS will be able to send commands to the laboratory equipment to monitor and control the environmental and experimental parameters inside specific habitats. Common laboratory equipment such as microscopes, cryo freezers, radiation dosimeters, and mass measurement devices are also currently in design stages by NASA and the ISS international partners. 相似文献
133.
Jan B. Nee 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
In this paper, we present the spatial variations of O(1D) airglow observed by the ISUAL (Imager of Sprites and Upper Atmospheric Lightning) instrument on board the FORMOSAT-2 satellite. With a CCD camera and a 630 nm filter, ISUAL can measure global atmospheric emissions lying between the heights of 80 and 300 km. In days of 3–6 September 2008 and 25–27 February 2009, ISUAL has measured the emissions of O(1D) airglow with results showing strong longitudinal peak-3 and peak-4 structures. The Lomb-Scargle analyses for these two cases show periods of longitudes of 120° and 90° supporting the DE2 and DE3 non-migrating tides. The 630 nm emissions are enhanced in equatorial regions and are lying along the equator. Over Africa its intensity can sometimes increase up to 80% relative to other longitudes. The perturbation is so strong that non-migrating tides are erased. A case of bimodal distribution with strong emissions at latitudes in equator and mid-latitude in geographic coordinates was observed. 相似文献
134.
Samy El-Jaby Leena Tomi Lembit Sihver Tatsuhiko Sato Richard B. Richardson Brent J. Lewis 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
This paper describes a methodology for assessing the pre-mission exposure of space crew aboard the International Space Station (ISS) in terms of an effective dose equivalent. In this approach, the PHITS Monte Carlo code was used to assess the particle transport of galactic cosmic radiation (GCR) and trapped radiation for solar maximum and minimum conditions through an aluminum shield thickness. From these predicted spectra, and using fluence-to-dose conversion factors, a scaling ratio of the effective dose equivalent rate to the ICRU ambient dose equivalent rate at a 10 mm depth was determined. Only contributions from secondary neutrons, protons, and alpha particles were considered in this analysis. 相似文献
135.
B. Yiğit Yıldız Mehmet Şahin Ozan Şenkal Vedat Peştimalci Kadir Tepecik 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Land surface temperature (LST) calculation utilizing satellite thermal images is very difficult due to the great temporal variance of atmospheric water vapor in the atmosphere which strongly affects the thermal radiance incoming to satellite sensors. In this study, Split-Window (SW) and Radial Basis Function (RBF) methods were utilized for prediction of LST using precipitable water for Turkey. Coll 94 Split-Window algorithm was modified using regional precipitable water values estimated from upper-air Radiosond observations for the years 1990–2007 and Local Split-Window (LSW) algorithms were generated for the study area. Using local algorithms and Advanced Very High Resolution Radiometer (AVHRR) data, monthly mean daily sum LST values were calculated. In RBF method latitude, longitude, altitude, surface emissivity, sun shine duration and precipitable water values were used as input variables of the structure. Correlation coefficients between estimated and measured LST values were obtained as 99.23% (for RBF) and 94.48% (for LSW) at 00:00 UTC and 92.77% (for RBF) and 89.98% (for LSW) at 12:00 UTC. These meaningful statistical results suggest that RBF and LSW methods could be used for LST calculation. 相似文献
136.
S. Carbone L.F. Padilha M.B. Rosa D.K. Pinheiro N.J. Schuch 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,37(12):2178-II
The first estimations of the aerosol optical thickness (AOT) using Langley Method at Southern Space Observatory (SSO) at Southern Brazil (29.4°S, 53.8°W) are presented. In addition to ozone and sulphur dioxide columns, AOT can be obtained using Brewer Spectrophotometer at specific wavelengths: 306.3, 310.1, 313.5, 316.8 and 320.1 nm. The AOT was obtained for the period from November/2002 to May/2003. Very low AOT averages were obtained, whose values were about 0.21 ± 0.03 at 306.3 nm, 0.21 ± 0.02 at 310.1 nm, 0.19 ± 0.02 at 313.5 nm, 0.20 ± 0.02 at 316.8 nm and 0.20 ± 0.02 at 320.0 nm for all period analysed. Different behaviour of AOT were obtained at two daily specific periods of aerosol accumulation, one in the afternoons from November/2002 to February/2003, caused mainly by a mild biomass burning season’s in the region and other in the mornings from March to May/2003, due the high relative humidity presented in the region studied. 相似文献
137.
S. Seetha M.C. Ramadevi V.C. Babu M.R. Sharma N.S.R. Murthy B.N. Ashoka K.C. Shyama R. Kulkarni G. Meena P. Sreekumar 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,38(12):2995-2998
The Scanning Sky Monitor is one of the experiments onboard the ASTROSAT, an Indian multiwavelength astronomy satellite mission. This experiment will detect and monitor X-ray transients in the energy band 2–10 keV. It is similar in design to the ASM on RXTE. It consists of position-sensitive proportional counters with one-dimensional mask. We describe the configuration of the experiment. We also discuss some of the results obtained using a detector which has already been fabricated and tested in our laboratory. 相似文献
138.
H. Raichur B. Paul S. Naik N. Bhatt 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,38(12):2785-2787
High mass X-ray binary (HMXB) pulsars are of two types, persistent and transient. 4U1538−52 is a persistent HMXB whose orbit was previously measured to be circular but the RXTE observations revealed an eccentric orbit. We observed this system with RXTE-PCA in August 2003 and our timing analysis supports the eccentric orbit of the system. However, we do not find any evidence for orbital evolution.
Rotational and tidal interactions between the stars of a closed binary system result in apsidal motion which can be measured in systems with eccentric orbit. 4U0115+63 is a Be-transient HMXB whose eccentric orbit was well-determined during its 1978 outburst. We report preliminary results from analysis of data obtained during the 1999 outburst of this source with the RXTE-PCA. 相似文献
139.
Mende S.B. Heetderks H. Frey H.U. Lampton M. Geller S.P. Abiad R. Siegmund O.H.W. Tremsin A.S. Spann J. Dougani H. Fuselier S.A. Magoncelli A.L. Bumala M.B. Murphree S. Trondsen T. 《Space Science Reviews》2000,91(1-2):271-285
The Far Ultraviolet Wideband Imaging Camera (WIC) complements the magnetospheric images taken by the IMAGE satellite instruments with simultaneous global maps of the terrestrial aurora. Thus, a primary requirement of WIC is to image the total intensity of the aurora in wavelength regions most representative of the auroral source and least contaminated by dayglow, have sufficient field of view to cover the entire polar region from spacecraft apogee and have resolution that is sufficient to resolve auroras on a scale of 1 to 2 latitude degrees. The instrument is sensitive in the spectral region from 140–190 nm. The WIC is mounted on the rotating IMAGE spacecraft viewing radially outward and has a field of view of 17° in the direction parallel to the spacecraft spin axis. Its field of view is 30° in the direction perpendicular to the spin axis, although only a 17°×17° image of the Earth is recorded. The optics was an all-reflective, inverted Cassegrain Burch camera using concentric optics with a small convex primary and a large concave secondary mirror. The mirrors were coated by a special multi-layer coating, which has low reflectivity in the visible and near UV region. The detector consists of a MCP-intensified CCD. The MCP is curved to accommodate the focal surface of the concentric optics. The phosphor of the image intensifier is deposited on a concave fiberoptic window, which is then coupled to the CCD with a fiberoptic taper. The camera head operates in a fast frame transfer mode with the CCD being read approximately 30 full frames (512×256 pixel) per second with an exposure time of 0.033 s. The image motion due to the satellite spin is minimal during such a short exposure. Each image is electronically distortion corrected using the look up table scheme. An offset is added to each memory address that is proportional to the image shift due to satellite rotation, and the charge signal is digitally summed in memory. On orbit, approximately 300 frames will be added to produce one WIC image in memory. The advantage of the electronic motion compensation and distortion correction is that it is extremely flexible, permitting several kinds of corrections including motions parallel and perpendicular to the predicted axis of rotation. The instrument was calibrated by applying ultraviolet light through a vacuum monochromator and measuring the absolute responsivity of the instrument. To obtain the data for the distortion look up table, the camera was turned through various angles and the input angles corresponding to a pixel matrix were recorded. It was found that the spectral response peaked at 150 nm and fell off in either direction. The equivalent aperture of the camera, including mirror reflectivities and effective photocathode quantum efficiency, is about 0.04 cm2. Thus, a 100 Rayleigh aurora is expected to produce 23 equivalent counts per pixel per 10 s exposure at the peak of instrument response. 相似文献
140.
Mende S.B. Heetderks H. Frey H.U. Stock J.M. Lampton M. Geller S.P. Abiad R. Siegmund O.H.W. Habraken S. Renotte E. Jamar C. Rochus P. Gerard J.-C. Sigler R. Lauche H. 《Space Science Reviews》2000,91(1-2):287-318
Two FUV Spectral imaging instruments, the Spectrographic Imager (SI) and the Geocorona Photometer (GEO) provide IMAGE with simultaneous global maps of the hydrogen (121.8 nm) and oxygen 135.6 nm components of the terrestrial aurora and with observations of the three dimensional distribution of neutral hydrogen in the magnetosphere (121.6 nm). The SI is a novel instrument type, in which spectral separation and imaging functions are independent of each other. In this instrument, two-dimensional images are produced on two detectors, and the images are spectrally filtered by a spectrograph part of the instrument. One of the two detectors images the Doppler-shifted Lyman- while rejecting the geocoronal `cold Ly-, and another detector images the OI 135.6 nm emission. The spectrograph is an all-reflective Wadsworth configuration in which a grill arrangement is used to block most of the cold, un-Doppler-shifted geocoronal emission at 121.567 nm. The SI calibration established that the upper limit of transmission at cold geocoronal Ly- is less than 2%. The measured light collecting efficiency was 0.01 and 0.008 cm2 at 121.8 and at 135.6 nm, respectively. This is consistent with the size of the input aperture, the optical transmission, and the photocathode efficiency. The expected sensitivity is 1.8×10–2 and 1.3×10–2 counts per Rayleigh per pixel for each 5 s viewing exposure per satellite revolution (120 s). The measured spatial resolution is better than the 128×128 pixel matrix over the 15°×15° field of view in both wavelength channels. The SI detectors are photon counting devices using the cross delay line principle. In each detector a triple stack microchannel plate (MCP) amplifies the photo-electronic charge which is then deposited on a specially configured anode array. The position of the photon event is measured by digitizing the time delay between the pulses detected at each end of the anode structures. This scheme is intrinsically faster than systems that use charge division and it has a further advantage that it saturates more gradually at high count rates. The geocoronal Ly- is measured by a three-channel photometer system (GEO) which is a separate instrument. Each photometer has a built in MgF2 lens to restrict the field of view to one degree and a ceramic electron multiplier with a KBr photocathode. One of the tubes is pointing radially outward perpendicular to the axis of satellite rotation. The optic of the other two subtend 60° with the rotation axis. These instruments take data continuously at 3 samples per second and rely on the combination of satellite rotation and orbital motion to scan the hydrogen cloud surrounding the earth. The detective efficiencies (effective quantum efficiency including windows) of the three tubes at Ly- are between 6 and 10%. 相似文献