首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2532篇
  免费   4篇
  国内免费   6篇
航空   1187篇
航天技术   919篇
综合类   9篇
航天   427篇
  2021年   18篇
  2019年   16篇
  2018年   58篇
  2017年   35篇
  2016年   39篇
  2015年   12篇
  2014年   55篇
  2013年   89篇
  2012年   55篇
  2011年   85篇
  2010年   71篇
  2009年   118篇
  2008年   139篇
  2007年   58篇
  2006年   63篇
  2005年   64篇
  2004年   64篇
  2003年   85篇
  2002年   43篇
  2001年   92篇
  2000年   48篇
  1999年   65篇
  1998年   69篇
  1997年   66篇
  1996年   65篇
  1995年   87篇
  1994年   86篇
  1993年   41篇
  1992年   50篇
  1991年   15篇
  1990年   24篇
  1989年   51篇
  1988年   32篇
  1987年   20篇
  1986年   28篇
  1985年   74篇
  1984年   72篇
  1983年   42篇
  1982年   71篇
  1981年   67篇
  1980年   17篇
  1979年   10篇
  1978年   31篇
  1977年   12篇
  1975年   24篇
  1974年   16篇
  1973年   16篇
  1972年   16篇
  1970年   9篇
  1969年   12篇
排序方式: 共有2542条查询结果,搜索用时 14 毫秒
791.
The Search Coil Magnetometer for THEMIS   总被引:2,自引:0,他引:2  
THEMIS instruments incorporate a tri-axial Search Coil Magnetometer (SCM) designed to measure the magnetic components of waves associated with substorm breakup and expansion. The three search coil antennas cover the same frequency bandwidth, from 0.1 Hz to 4 kHz, in the ULF/ELF frequency range. They extend, with appropriate Noise Equivalent Magnetic Induction (NEMI) and sufficient overlap, the measurements of the fluxgate magnetometers. The NEMI of the searchcoil antennas and associated pre-amplifiers is smaller than 0.76 pT $/\sqrt{\mathrm{Hz}}$ at 10 Hz. The analog signals produced by the searchcoils and associated preamplifiers are digitized and processed inside the Digital Field Box (DFB) and the Instrument Data Processing Unit (IDPU), together with data from the Electric Field Instrument (EFI). Searchcoil telemetry includes waveform transmission, FFT processed data, and data from a filter bank. The frequency range covered depends on the available telemetry. The searchcoils and their three axis structures have been precisely calibrated in a calibration facility, and the calibration of the transfer function is checked on board, usually once per orbit. The tri-axial searchcoils implemented on the five THEMIS spacecraft are working nominally.  相似文献   
792.
The magnetic field experiment on WIND will provide data for studies of a broad range of scales of structures and fluctuation characteristics of the interplanetary magnetic field throughout the mission, and, where appropriate, relate them to the statics and dynamics of the magnetosphere. The basic instrument of the Magnetic Field Investigation (MFI) is a boom-mounted dual triaxial fluxgate magnetometer and associated electronics. The dual configuration provides redundancy and also permits accurate removal of the dipolar portion of the spacecraft magnetic field. The instrument provides (1) near real-time data at nominally one vector per 92 s as key parameter data for broad dissemination, (2) rapid data at 10.9 vectors s–1 for standard analysis, and (3) occasionally, snapshot (SS) memory data and Fast Fourier Transform data (FFT), both based on 44 vectors s–1. These measurements will be precise (0.025%), accurate, ultra-sensitive (0.008 nT/step quantization), and where the sensor noise level is <0.006 nT r.m.s. for 0–10 Hz. The digital processing unit utilizes a 12-bit microprocessor controlled analogue-to-digital converter. The instrument features a very wide dynamic range of measurement capability, from ±4 nT up to ±65 536 nT per axis in eight discrete ranges. (The upper range permits complete testing in the Earth's field.) In the FTT mode power spectral density elements are transmitted to the ground as fast as once every 23 s (high rate), and 2.7 min of SS memory time series data, triggered automatically by pre-set command, requires typically about 5.1 hours for transmission. Standard data products are expected to be the following vector field averages: 0.0227-s (detail data from SS), 0.092 s (detail in standard mode), 3 s, 1 min, and 1 hour, in both GSE and GSM coordinates, as well as the FFT spectral elements. As has been our team's tradition, high instrument reliability is obtained by the use of fully redundant systems and extremely conservative designs. We plan studies of the solar wind: (1) as a collisionless plasma laboratory, at all time scales, macro, meso and micro, but concentrating on the kinetic scale, the highest time resolution of the instrument (=0.022 s), (2) as a consequence of solar energy and mass output, (3) as an external source of plasma that can couple mass, momentum, and energy to the Earth's magnetosphere, and (4) as it is modified as a consequence of its imbedded field interacting with the moon. Since the GEOTAIL Inboard Magnetometer (GIM), which is similar to the MFI instrument, was developed by members of our team, we provide a brief discussion of GIM related science objectives, along with MFI related science goals.  相似文献   
793.
Data obtained by the Ulysses magnetometer and solar wind analyzer have been combined to study the properties of magnetic holes in the solar wind between 1 and 5.4 AU and to 23° south latitude. Although the plasma surrounding the holes was generally stable against the mirror instability, there are indications that the holes may have been remnants of mirror mode structures created upstream of the points of observation. Those indications include: (1) For the few holes for which proton or alpha-particle pressure could be measured inside the hole, the ion thermal pressure was always greater than in the plasma adjacent to the holes. (2) The plasma surrounding many of the holes was marginally stable for the mirror mode, while the plasma environment of all the holes was significantly closer to mirror instability than was the average solar wind. (3) The plasma containing trains of closely spaced holes was closer to mirror instability than was the plasma containing isolated holes. (4) The near-hole plasma had much higher ion (ratio of thermal to magnetic pressure) than did the average solar wind.  相似文献   
794.
The relative abundances of low energy ions (0.6–2.0 MeV/n) in solar energetic particle (SEP) and corotating interaction region (CIR) events have been measured by the EPAC experiment aboard Ulysses since launch in October 1990 until the present time. We give an overview of the abundances of heavy ions (He, C, Ne, Fe) relative to oxygen during energetic particle events lasting longer than 5 days during the in- and out-of-ecliptic phase of the mission. While the period Oct. 1990 to Aug. 1992 was dominated by high solar activity the Ulysses out of ecliptic passage at solar latitudes up to 45° went parallel to the declining phase of solar activity. Thus a very clear structure of corotating interaction regions was observed. While the in-ecliptic composition is in general agreement with measurements made near the Earth, the development of the CIR-composition shows two phases: From Aug. 1992 to May 1993 the C/O-ratio is 0.55–0.70, afterwards it increases to 0.8–0.9. This increase is correlated to the disappearance of the current sheet at 30° solar latitude reported by Smithet al. (1993).  相似文献   
795.
HIGH TEMPERATURE MOIRE INTERFEROMETRY TECHNOLOGYZhangGuozhou;ZhuangYunan;B.S.J.Kang,WangFengxiang(Faculty403,BeijingUniversit...  相似文献   
796.
A 10 kW DC-DC converter using IGBTs with active snubbers   总被引:1,自引:0,他引:1  
This full bridge DC-DC converter employs zero voltage switching (ZVS) on one leg and zero current switching (ZCS) on the other. This technique produces exceptionally low insulated-gate bipolar transistor (IGBT) switching losses through the use of an active snubber that recycles energy back to the source. Experimental results are presented for a 10-kW, 20-kHz converter  相似文献   
797.
The Hot Plasma Experiment, F3H, on boardFreja is designed to measure auroral particle distribution functions with very high temporal and spatial resolution. The experiment consists of three different units; an electron spectrometer that measures angular and energy distributions simultaneously, a positive ion spectrometer that is using the spacecraft spin for three-dimensional measurements, and a data processing unit. The main scientific objective is to study positive ion heating perpendicular to the magnetic field lines in the auroral region. The high resolution measurements of different positive ion species and electrons have already provided important information on this process as well as on other processes at high latitudes. This includes for example high resolution observations of auroral particle precipitation features and source regions of positive ions during magnetic disturbances. TheFreja orbit with an inclination of 63° allows us to make detailed measurements in the nightside auroral oval during all disturbance levels. In the dayside, the cusp region is covered during magnetic disturbances. We will here present the instrument in some detail and some outstanding features in the particle data obtained during the first months of operation at altitudes around 1700 km in the northern hemisphere auroral region.  相似文献   
798.
A survey of the present-day situation in gasdynamical models of solar wind interaction with the local interstellar medium is presented. A role of these models in interpreting a number of observed physical phenomena is investigated. Experimental data and possible observations are considered from the viewpoint of their interpretation on the basis of theoretical models. Our attention is concentrated on the main limitations of the gasdynamical models, in particular, two-shocks model developed by Baranovet al. (1981, 1982).  相似文献   
799.
A multispectral imager has been developed for a rendezvous mission with the near-Earth asteroid, 433 Eros. The Multi-Spectral Imager (MSI) on the Near-Earth Asteroid Rendezvous (NEAR) spacecraft uses a five-element refractive optical telescope, has a field of view of 2.93 × 2.25°, a focal length of 167.35 mm, and has a spatial resolution of 16.1 × 9.5 m at a range of 100 km. The spectral sensitivity of the instrument spans visible to near infrared wavelengths, and was designed to provide insight into the nature and fundamental properties of asteroids and comets. Seven narrow band spectral filters were chosen to provide multicolor imaging and to make comparative studies with previous observations of S asteroids and measurements of the characteristic absorption in Fe minerals near 1 µm. An eighth filter with a much wider spectral passband will be used for optical navigation and for imaging faint objects, down to visual magnitude of +10.5. The camera has a fixed 1 Hz frame rate and the signal intensities are digitized to 12 bits. The detector, a Thomson-CSF TH7866A Charge-Coupled Device, permits electronic shuttering which effectively varies the dynamic range over an additional three orders of magnitude. Communication with the NEAR spacecraft occurs via a MIL-STD-1553 bus interface, and a high speed serial interface permits rapid transmission of images to the spacecraft solid state recorder. Onboard image processing consists of a multi-tiered data compression scheme. The instrument was extensively tested and calibrated prior to launch; some inflight calibrations have already been completed. This paper presents a detailed overview of the Multi-Spectral Imager and its objectives, design, construction, testing and calibration.  相似文献   
800.
Lohr  D. A.  Zanetti  L. J.  Anderson  B. J.  Potemra  T. A.  Hayes  J. R.  Gold  R. E.  Henshaw  R. M.  Mobley  F. F.  Holland  D. B.  Acuña  M. H.  Scheifele  J. L. 《Space Science Reviews》1997,82(1-2):255-281
The primary objective of the investigation is the search for a body-wide magnetic field of the near Earth asteroid Eros. The Near Earth Asteroid Rendezvous (NEAR) 3-axis fluxgate magnetometer includes a sensor mounted on the high-gain antenna feed structure. The NEAR Magnetic Facility Instrument (MFI) is a joint hardware effort between GSFC and APL. The design and magnetics approach achieved by the NEAR MFI effort entailed low-cost, up-front attention to engineering solutions which did not impact the schedule. The goal of the magnetometer is reliable magnetic field measurements within 5 nT, which necessitates the use of an extensive spacecraft magnetic interference model but is achievable with the full year's orbital data set. Such a goal has been shown viable with recent in-flight calibration data and comparisons to the WIND magnetometer data. The NEAR MFI effort has succeeded in providing magnetic field measurements for the first flight in NASA's Discovery line.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号