首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2532篇
  免费   4篇
  国内免费   6篇
航空   1187篇
航天技术   919篇
综合类   9篇
航天   427篇
  2021年   18篇
  2019年   16篇
  2018年   58篇
  2017年   35篇
  2016年   39篇
  2015年   12篇
  2014年   55篇
  2013年   89篇
  2012年   55篇
  2011年   85篇
  2010年   71篇
  2009年   118篇
  2008年   139篇
  2007年   58篇
  2006年   63篇
  2005年   64篇
  2004年   64篇
  2003年   85篇
  2002年   43篇
  2001年   92篇
  2000年   48篇
  1999年   65篇
  1998年   69篇
  1997年   66篇
  1996年   65篇
  1995年   87篇
  1994年   86篇
  1993年   41篇
  1992年   50篇
  1991年   15篇
  1990年   24篇
  1989年   51篇
  1988年   32篇
  1987年   20篇
  1986年   28篇
  1985年   74篇
  1984年   72篇
  1983年   42篇
  1982年   71篇
  1981年   67篇
  1980年   17篇
  1979年   10篇
  1978年   31篇
  1977年   12篇
  1975年   24篇
  1974年   16篇
  1973年   16篇
  1972年   16篇
  1970年   9篇
  1969年   12篇
排序方式: 共有2542条查询结果,搜索用时 187 毫秒
491.
基于自联想网络的发动机传感器解析余度技术   总被引:9,自引:2,他引:7  
本文提出了一种基于自联想神经网络的传感器解析余度技术。在这种网络中,冗余传感器的信息被压缩、重组进入网络的第一部分,网络的第二部分将压缩信息恢复出来。基于数据融合原理,若一个传感器发生故障,其它传感器仍可提供足够的信息代替发生故障的传感器。理论分析和用于涡轴发动机的仿真结果表明,这种特殊结构的自联想网络具有良好的过滤噪声和故障信号的作用,特别适合于用作不易建模的复杂对象的传感器信号重构  相似文献   
492.
The aim of the proposed Beagle 2 small lander for ESA's 2003 Mars Express mission is to search for organic material on and below the surface of Mars and to study the inorganic chemistry and mineralogy of the landing site. The lander will have a total mass of 60kg including entry, descent, and landing system. Experiments will be deployed on the surface using a robotic arm. It will use a mechanical mole and grinder to obtain samples from below the surface, under rocks, and inside rocks. Sample analysis by a mass spectrometer will include isotopic analysis. An optical microscope, an X-ray spectrometer and a Mossbauer spectrometer will conduct in-situ rock studies.  相似文献   
493.
Stone  E.C.  Cohen  C.M.S.  Cook  W.R.  Cummings  A.C.  Gauld  B.  Kecman  B.  Leske  R.A.  Mewaldt  R.A.  Thayer  M.R.  Dougherty  B.L.  Grumm  R.L.  Milliken  B.D.  Radocinski  R.G.  Wiedenbeck  M.E.  Christian  E.R.  Shuman  S.  von Rosenvinge  T.T. 《Space Science Reviews》1998,86(1-4):357-408
The Solar Isotope Spectrometer (SIS), one of nine instruments on the Advanced Composition Explorer (ACE), is designed to provide high- resolution measurements of the isotopic composition of energetic nuclei from He to Zn (Z=2 to 30) over the energy range from ∼10 to ∼100 MeV nucl−1. During large solar events SIS will measure the isotopic abundances of solar energetic particles to determine directly the composition of the solar corona and to study particle acceleration processes. During solar quiet times SIS will measure the isotopes of low-energy cosmic rays from the Galaxy and isotopes of the anomalous cosmic-ray component, which originates in the nearby interstellar medium. SIS has two telescopes composed of silicon solid-state detectors that provide measurements of the nuclear charge, mass, and kinetic energy of incident nuclei. Within each telescope, particle trajectories are measured with a pair of two-dimensional silicon-strip detectors instrumented with custom, very large-scale integrated (VLSI) electronics to provide both position and energy-loss measurements. SIS was especially designed to achieve excellent mass resolution under the extreme, high flux conditions encountered in large solar particle events. It provides a geometry factor of ∼40 cm2 sr, significantly greater than earlier solar particle isotope spectrometers. A microprocessor controls the instrument operation, sorts events into prioritized buffers on the basis of their charge, range, angle of incidence, and quality of trajectory determination, and formats data for readout by the spacecraft. This paper describes the design and operation of SIS and the scientific objectives that the instrument will address. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
494.
We propose to study the radiation environment on board different flight vehicles: cosmos-type satellites, orbital stations, Space Shuttles and civil (sonic and supersonic) aircraft. These investigations will be carried out with single type of passive detector, namely, nuclear photoemulsions (NPE) with adjustable threshold of particle detection within broad range of linear energy transfer (LET) that is done by means of the technique of selective development of NPE exposed in space.

These investigations will allow one to determine:

• integral spectra of LET of charged particles of cosmic ray (CR) over a wide range from 2.0 to 5×104 MeV/cm in biological tissue;

• differential energy spectra of fast neutrons (1–20 MeV);

• estimation of absorbed and equivalent doses from charged and neutral component CR;

• charge and energy spectra of low energy nuclei (E≤100 MeV) with Z≥2 having in view the extreme hazard radiation to biological objects and microelectronic schemes taken on board inside and outside of these different flight vehicles with exposures from several days to several months.

The investigation of radiation environment on board the airplanes depending on the flight parameters will be conducted using emulsions of different sensitivity without any controlling of threshold sensitivity (Akopova et al., 1996). The proposed detector can be used in the joint experiments on the new International Cosmic Station “Alpha”.  相似文献   

495.
分析了冷轧体心立方金属中微带的形成原因.基于塑性变形理论,运用Taylor模型和Bishop&Hill最大功原理,计算了变形体心立方晶体中滑移系上的切应变分布.计算结果表明,冷轧时当晶粒的轧向平行于晶粒的某些特定取向时,大量的局部切应变将集中产生在一个滑移面上并在此形成微带.这一高度局域性的切应变是形成剪切带的原因.此时,剪切带与轧制方向之间夹角为30°.另外,微带呈片状是双交滑移的结果,透射电子显微镜观察到的剪切带所在晶粒的取向和所在滑移面证实了这一微带的形成机制.  相似文献   
496.
In the 18.5-day flight of the Soviet biosatellite Cosmos-936 (3-22, August 1977) com-parative investigations of the physiological effects of prolonged weightlessness (20 rats) and artificial gravity of 1 g (10 rats) were carried out. Throughout the flight artificial gravity was generated by means of animal rotation in two centrifuges with a radius of 320mm. Postflight examination of animals and treatment of the flight data were performed by Soviet scientists in collaboration with the specialists from Bulgaria, Czechoslovakia, the German Democratic Republic, Hungary, Poland, Rumania, France and the U.S.A. During the flight the total motor activity of the weightless rats was higher and their body temperature was lower than those of the centrifuged animals. Postflight examination of the weightless rats showed a greater percentage of errors during maze an increase in water intake and a decrease in diuresis; a fall of the resistance of peripheral red cells; an increase in the conditionally pathogenic microflora in the mouth; a decrease of oxygen consumption, carbon dioxide production and energy expenditures; a drop in the static physical endurance; a decline in the capacity to keep balance on the rail; an increase in the latent period of the lifting reflex, etc. The centrifugal animals displayed lesser or no change of the above type. These findings together with the biochemical and morphological data give evidence that during and after flight adaptive processes in the centrifuged rats developed better.  相似文献   
497.
Self-organization is a property of dissipative nonlinear processes that are governed by a global driving force and a local positive feedback mechanism, which creates regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to random processes. Here we investigate for the first time a comprehensive number of (17) self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous “order out of randomness”, during the evolution from an initially disordered system to an ordered quasi-stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (mechanical or gyromagnetic) resonances. The global driving force can be due to gravity, electromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective (Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or a loss-cone instability. Physical models of astrophysical self-organization processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simulations. Analytical formulations of self-organizing systems generally involve coupled differential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type.  相似文献   
498.
The ExoMars Trace Gas Orbiter (TGO) Science Ground Segment (SGS), comprised of payload Instrument Team, ESA and Russian operational centres, is responsible for planning the science operations of the TGO mission and for the generation and archiving of the scientific data products to levels meeting the scientific aims and criteria specified by the ESA Project Scientist as advised by the Science Working Team (SWT). The ExoMars SGS builds extensively upon tools and experience acquired through earlier ESA planetary missions like Mars and Venus Express, and Rosetta, but also is breaking ground in various respects toward the science operations of future missions like BepiColombo or JUICE. A productive interaction with the Russian partners in the mission facilitates broad and effective collaboration. This paper describes the global organisation and operation of the SGS, with reference to its principal systems, interfaces and operational processes.  相似文献   
499.
Land surface temperature (LST) calculation utilizing satellite thermal images is very difficult due to the great temporal variance of atmospheric water vapor in the atmosphere which strongly affects the thermal radiance incoming to satellite sensors. In this study, Split-Window (SW) and Radial Basis Function (RBF) methods were utilized for prediction of LST using precipitable water for Turkey. Coll 94 Split-Window algorithm was modified using regional precipitable water values estimated from upper-air Radiosond observations for the years 1990–2007 and Local Split-Window (LSW) algorithms were generated for the study area. Using local algorithms and Advanced Very High Resolution Radiometer (AVHRR) data, monthly mean daily sum LST values were calculated. In RBF method latitude, longitude, altitude, surface emissivity, sun shine duration and precipitable water values were used as input variables of the structure. Correlation coefficients between estimated and measured LST values were obtained as 99.23% (for RBF) and 94.48% (for LSW) at 00:00 UTC and 92.77% (for RBF) and 89.98% (for LSW) at 12:00 UTC. These meaningful statistical results suggest that RBF and LSW methods could be used for LST calculation.  相似文献   
500.
In this paper, we present the spatial variations of O(1D) airglow observed by the ISUAL (Imager of Sprites and Upper Atmospheric Lightning) instrument on board the FORMOSAT-2 satellite. With a CCD camera and a 630 nm filter, ISUAL can measure global atmospheric emissions lying between the heights of 80 and 300 km. In days of 3–6 September 2008 and 25–27 February 2009, ISUAL has measured the emissions of O(1D) airglow with results showing strong longitudinal peak-3 and peak-4 structures. The Lomb-Scargle analyses for these two cases show periods of longitudes of 120° and 90° supporting the DE2 and DE3 non-migrating tides. The 630 nm emissions are enhanced in equatorial regions and are lying along the equator. Over Africa its intensity can sometimes increase up to 80% relative to other longitudes. The perturbation is so strong that non-migrating tides are erased. A case of bimodal distribution with strong emissions at latitudes in equator and mid-latitude in geographic coordinates was observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号