全文获取类型
收费全文 | 2527篇 |
免费 | 9篇 |
国内免费 | 5篇 |
专业分类
航空 | 1187篇 |
航天技术 | 917篇 |
综合类 | 9篇 |
航天 | 428篇 |
出版年
2021年 | 18篇 |
2019年 | 16篇 |
2018年 | 59篇 |
2017年 | 36篇 |
2016年 | 39篇 |
2015年 | 12篇 |
2014年 | 55篇 |
2013年 | 90篇 |
2012年 | 55篇 |
2011年 | 85篇 |
2010年 | 71篇 |
2009年 | 118篇 |
2008年 | 139篇 |
2007年 | 58篇 |
2006年 | 63篇 |
2005年 | 64篇 |
2004年 | 64篇 |
2003年 | 85篇 |
2002年 | 43篇 |
2001年 | 92篇 |
2000年 | 48篇 |
1999年 | 65篇 |
1998年 | 69篇 |
1997年 | 66篇 |
1996年 | 64篇 |
1995年 | 87篇 |
1994年 | 86篇 |
1993年 | 41篇 |
1992年 | 50篇 |
1991年 | 15篇 |
1990年 | 24篇 |
1989年 | 51篇 |
1988年 | 32篇 |
1987年 | 20篇 |
1986年 | 29篇 |
1985年 | 74篇 |
1984年 | 70篇 |
1983年 | 42篇 |
1982年 | 69篇 |
1981年 | 67篇 |
1980年 | 17篇 |
1979年 | 10篇 |
1978年 | 31篇 |
1977年 | 12篇 |
1975年 | 24篇 |
1974年 | 16篇 |
1973年 | 16篇 |
1972年 | 16篇 |
1970年 | 9篇 |
1969年 | 12篇 |
排序方式: 共有2541条查询结果,搜索用时 15 毫秒
201.
B. Sylwester J. Sylwester K.J.H. Phillips E. Landi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
We present the observations of He-like Ar triplet lines obtained by RESIK spectrometer aboard CORONAS-F. Interpretation of intensity ratios between triplet lines of lower Z elements is known to provide useful diagnostics of plasma conditions within the emitting source. Here, we investigate whether triplet line ratios are useful for interpretation of higher Z element spectra. A high sensitivity, low background and precise absolute calibration of RESIK allow to consider in addition also the continuum contribution. This provides a way to determine the Ar absolute abundance from the observed triplet component ratios. The method is presented and the results are shown for two selected flares. Derived values of Ar absolute abundance for these flares are found to be similar: 2.6 × 10−6 and 2.9 × 10−6. They fall in the range between presently accepted Ar photospheric and coronal abundances. 相似文献
202.
203.
This paper completes the study of optimal transfers with constraints imposed on the thrust vector direction that was opened by paper [1]. The linear inhomogeneous and homogeneous constraints on the thrust direction are considered (specified either by equalities or inequalities), as well as mixed constraints. Some examples of the constraints are presented. A modified method of the transporting trajectory is applied in order to find the optimal transfer under the linear constraints on the thrust direction. This method also gives the necessary condition for a transfer possibility at a given constraint on the thrust direction. A numerical example is considered, in which the propellant consumption is analyzed for the cases of transfers with and without constraints. 相似文献
204.
R. A. Masterson M. Chodas L. Bayley B. Allen J. Hong P. Biswas C. McMenamin K. Stout E. Bokhour H. Bralower D. Carte S. Chen M. Jones S. Kissel F. Schmidt M. Smith G. Sondecker L. F. Lim D. S. Lauretta J. E. Grindlay R. P. Binzel 《Space Science Reviews》2018,214(1):48
The Regolith X-ray Imaging Spectrometer (REXIS) is the student collaboration experiment proposed and built by an MIT-Harvard team, launched aboard NASA’s OSIRIS-REx asteroid sample return mission. REXIS complements the scientific investigations of other OSIRIS-REx instruments by determining the relative abundances of key elements present on the asteroid’s surface by measuring the X-ray fluorescence spectrum (stimulated by the natural solar X-ray flux) over the range of energies 0.5 to 7 keV. REXIS consists of two components: a main imaging spectrometer with a coded aperture mask and a separate solar X-ray monitor to account for the Sun’s variability. In addition to element abundance ratios (relative to Si) pinpointing the asteroid’s most likely meteorite association, REXIS also maps elemental abundance variability across the asteroid’s surface using the asteroid’s rotation as well as the spacecraft’s orbital motion. Image reconstruction at the highest resolution is facilitated by the coded aperture mask. Through this operation, REXIS will be the first application of X-ray coded aperture imaging to planetary surface mapping, making this student-built instrument a pathfinder toward future planetary exploration. To date, 60 students at the undergraduate and graduate levels have been involved with the REXIS project, with the hands-on experience translating to a dozen Master’s and Ph.D. theses and other student publications. 相似文献
205.
E. H. B. M. Gronenschild R. Mewe N. J. Westergaard J. Heise F. D. Seward T. Chlebowski N. P. M. Kuin A. C. Brinkman J. H. Dijkstra H. W. Schnopper 《Space Science Reviews》1981,30(1-4):185-189
The binary system Capella (G6 III + F9 III) has been observed on 1979 March 15 and on 1980 March 15–17 with the Objective Grating Spectrometer (OGS) onboard theEinstein Observatory. The spectrum measured with the 1000 l/mm grating covers the range 5–30 Å with a resolution < 1 Å. The spectra show evidence for a bimodal temperature distribution of emission measure in an optically thin plasma with one component 5 million degrees and the other one 10 million degrees. Spectral features can be identified with line emissions from O VIII, Fe XVII, Fe XVIII, Fe XXIV, and Ne X ions. Good spectral fits have been obtained assuming standard cosmic abundances. The data are interpreted in terms of emission from hot static coronal loops rather similar to the magnetic arch structures found on the Sun. It is shown that the conditions required by this model exist on Capella. Mean values of loop parameters are derived for both temperature components. 相似文献
206.
207.
E.S. Seo T. Anderson D. Angelaszek S.J. Baek J. Baylon M. Buénerd M. Copley S. Coutu L. Derome B. Fields M. Gupta J.H. Han I.J. Howley H.G. Huh Y.S. Hwang H.J. Hyun I.S. Jeong D.H. Kah K.H. Kang D.Y. Kim H.J. Kim K.C. Kim M.H. Kim K. Kwashnak J. Lee M.H. Lee J.T. Link L. Lutz A. Malinin A. Menchaca-Rocha J.W. Mitchell S. Nutter O. Ofoha H. Park I.H. Park J.M. Park P. Patterson J.R. Smith J. Wu Y.S. Yoon 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The Cosmic Ray Energetics And Mass (CREAM) instrument is configured with a suite of particle detectors to measure TeV cosmic-ray elemental spectra from protons to iron nuclei over a wide energy range. The goal is to extend direct measurements of cosmic-ray composition to the highest energies practical, and thereby have enough overlap with ground based indirect measurements to answer questions on cosmic-ray origin, acceleration and propagation. The balloon-borne CREAM was flown successfully for about 161 days in six flights over Antarctica to measure elemental spectra of Z = 1–26 nuclei over the energy range 1010 to >1014 eV. Transforming the balloon instrument into ISS-CREAM involves identification and replacement of components that would be at risk in the International Space Station (ISS) environment, in addition to assessing safety and mission assurance concerns. The transformation process includes rigorous testing of components to reduce risks and increase survivability on the launch vehicle and operations on the ISS without negatively impacting the heritage of the successful CREAM design. The project status, including results from the ongoing analysis of existing data and, particularly, plans to increase the exposure factor by another order of magnitude utilizing the International Space Station are presented. 相似文献
208.
E. Caroli J. B. Stephen G. Di Cocco L. Natalucci A. Spizzichino 《Space Science Reviews》1987,45(3-4):349-403
209.
F A Cucinotta W Schimmerling J W Wilson L E Peterson P B Saganti J F Dicello 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(6):1383-1389
Methods used to project risks in low-Earth orbit are of questionable merit for exploration missions because of the limited radiobiology data and knowledge of galactic cosmic ray (GCR) heavy ions, which causes estimates of the risk of late effects to be highly uncertain. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Using the linear-additivity model for radiation risks, we use Monte-Carlo sampling from subjective uncertainty distributions in each factor to obtain an estimate of the overall uncertainty in risk projections. The resulting methodology is applied to several human space exploration mission scenarios including a deep space outpost and Mars missions of duration of 360, 660, and 1000 days. The major results are the quantification of the uncertainties in current risk estimates, the identification of factors that dominate risk projection uncertainties, and the development of a method to quantify candidate approaches to reduce uncertainties or mitigate risks. The large uncertainties in GCR risk projections lead to probability distributions of risk that mask any potential risk reduction using the "optimization" of shielding materials or configurations. In contrast, the design of shielding optimization approaches for solar particle events and trapped protons can be made at this time and promising technologies can be shown to have merit using our approach. The methods used also make it possible to express risk management objectives in terms of quantitative metrics, e.g., the number of days in space without exceeding a given risk level within well-defined confidence limits. 相似文献
210.