全文获取类型
收费全文 | 2531篇 |
免费 | 7篇 |
国内免费 | 6篇 |
专业分类
航空 | 1190篇 |
航天技术 | 918篇 |
综合类 | 9篇 |
航天 | 427篇 |
出版年
2021年 | 18篇 |
2019年 | 16篇 |
2018年 | 59篇 |
2017年 | 36篇 |
2016年 | 39篇 |
2015年 | 12篇 |
2014年 | 55篇 |
2013年 | 89篇 |
2012年 | 55篇 |
2011年 | 85篇 |
2010年 | 71篇 |
2009年 | 119篇 |
2008年 | 139篇 |
2007年 | 58篇 |
2006年 | 63篇 |
2005年 | 64篇 |
2004年 | 64篇 |
2003年 | 85篇 |
2002年 | 43篇 |
2001年 | 92篇 |
2000年 | 48篇 |
1999年 | 65篇 |
1998年 | 69篇 |
1997年 | 66篇 |
1996年 | 64篇 |
1995年 | 87篇 |
1994年 | 86篇 |
1993年 | 41篇 |
1992年 | 50篇 |
1991年 | 15篇 |
1990年 | 25篇 |
1989年 | 51篇 |
1988年 | 32篇 |
1987年 | 20篇 |
1986年 | 29篇 |
1985年 | 75篇 |
1984年 | 70篇 |
1983年 | 42篇 |
1982年 | 69篇 |
1981年 | 67篇 |
1980年 | 17篇 |
1979年 | 10篇 |
1978年 | 31篇 |
1977年 | 12篇 |
1975年 | 24篇 |
1974年 | 16篇 |
1973年 | 16篇 |
1972年 | 16篇 |
1970年 | 9篇 |
1969年 | 12篇 |
排序方式: 共有2544条查询结果,搜索用时 15 毫秒
851.
C. S. Fish C. M. Swenson G. Crowley A. Barjatya T. Neilsen J. Gunther I. Azeem M. Pilinski R. Wilder D. Allen M. Anderson B. Bingham K. Bradford S. Burr R. Burt B. Byers J. Cook K. Davis C. Frazier S. Grover G. Hansen S. Jensen R. LeBaron J. Martineau J. Miller J. Nelsen W. Nelson P. Patterson E. Stromberg J. Tran S. Wassom C. Weston M. Whiteley Q. Young J. Petersen S. Schaire C. R. Davis M. Bokaie R. Fullmer R. Baktur J. Sojka M. Cousins 《Space Science Reviews》2014,181(1-4):61-120
Funded by the NSF CubeSat and NASA ELaNa programs, the Dynamic Ionosphere CubeSat Experiment (DICE) mission consists of two 1.5U CubeSats which were launched into an eccentric low Earth orbit on October 28, 2011. Each identical spacecraft carries two Langmuir probes to measure ionospheric in-situ plasma densities, electric field probes to measure in-situ DC and AC electric fields, and a science grade magnetometer to measure in-situ DC and AC magnetic fields. Given the tight integration of these multiple sensors with the CubeSat platforms, each of the DICE spacecraft is effectively a “sensor-sat” capable of comprehensive ionospheric diagnostics. The use of two identical sensor-sats at slightly different orbiting velocities in nearly identical orbits permits the de-convolution of spatial and temporal ambiguities in the observations of the ionosphere from a moving platform. In addition to demonstrating nanosat-based constellation science, the DICE mission is advancing a number of groundbreaking CubeSat technologies including miniaturized mechanisms and high-speed downlink communications. 相似文献
852.
Masserant B.J. Stuart T.A. 《IEEE transactions on aerospace and electronic systems》1997,33(3):930-938
A battery charger is described that uses an on-line microcontroller to maximize its output power. This is done by always operating at either the maximum allowable input current or the thermal limit imposed by the charger itself. In this case the thermal limit is determined by the junction temperatures of the two main insulated gate bipolar transistors (IGBTs). Since direct measurement of these temperatures is impractical, they must be calculated by a computer algorithm that uses various on-line measurements. Experimental results for an 8 kW charger indicate a reduction in the bulk charging time of about 26% when used with a set of NiFe batteries. 相似文献
853.
Basic mechanisms of the hydrodynamic shock wave formation in the solar atmosphere during flares are considered. Hydrodynamic plasma flows during flares arise due to fast energy release which is accumulated in the magnetic field of currents in the solar atmosphere. Shock waves arise as a result of rapid heating of the chromospheric upper layers from accelerated particles or heat fluxes. Powerful hydrodynamic phenomena can also arise due to explosive current sheet disruption in the region of strong magnetic field reconnection. Fundamental questions of shock wave formation and propagation in a non-homogeneous emitting solar atmosphere are discussed.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia. 相似文献
854.
This paper presents the results of optical observations in the active space experiment “Radar-Progress” on April 17, 2013, after switching on the approach-correction engine of the Progress M-17M cargo spacecraft at thermospheric heights (412 km), are presented in this paper. During engine operation, a region of enhanced emission intensity has been recorded. It was presumably related to the scatter of twilight solar emission at the engine exhausts in the cargo spacecraft orbit and, probably to the occurrence of an additional emission in the atomic oxygen line [OI] 630 nm. The maximum observed dimensions of the emission region were ~350 and ~250 km along the orbit and across it, respectively. The velocity of the expansion of the emission region at the first moments after the initiation of engine operation was ~7 and ~3.5 km/s along the orbit and across it, respectively. The maximum intensity of the disturbed region is estimated to be a value equivalent to ~40–60 R within the spectral band of 2 nm. No optical manifestation, which would exceed the natural variations in brightness of the night airglow and which would be related to possible large-scale modification of the ionosphere, was detected in the natural emission lines [O] 557.7 and 630.0 nm in a zone remote from the place of injection of engine exhausts. 相似文献
855.
Gioia D. Massa Judith B. Santini Cary A. Mitchell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Strawberry is a candidate crop for space that is rich in protective antioxidants and could also have psychological benefits as a component of crew diets during long-duration space habitation. Energy for electric lighting is a major input to a controlled-environment crop-production system for space habitation. Day-neutral strawberry cultivars were evaluated at several different photoperiods to determine minimum lighting requirements without limiting yield or negatively impacting fruit quality. The cultivars ‘Tribute’, ‘Seascape’, and ‘Fern’ were grown at 14, 17, or 20 h of light per day, and fruit yield was evaluated over a 31-week production period. This amounted to a difference of 2418 kWh m−2 in energy usage between the longest and shortest photoperiods. All cultivars produced similar total fresh weight of fruit regardless of photoperiod. Volunteer tasters rated organoleptic characteristics including sweetness, tartness, texture, and overall appeal as measures of fruit quality. Generally, organoleptic attributes were not affected by photoperiod, but these attributes were somewhat dependent upon cultivar and harvest time. Cultivars under different photoperiods varied in their production of fruit over time. ‘Seascape’ was the most consistent producer, typically with the largest, most palatable fruit. ‘Seascape’ plants subsequently were grown at 10-, 12-, or 14-h photoperiods over a treatment period of 33 weeks. Photoperiod again had no significant effect on total fruit weight, although there were periodic flushes of productivity. Fruit under all photoperiods had acceptable approval ratings. A large-fruited, day-neutral strawberry cultivar such as ‘Seascape’ remains productive under shortened photoperiods, allowing reductions in energy and crew labor while maintaining flexibility for mixed-cropping scenarios in space. 相似文献
856.
By observing a Doppler signal at several points in space, it is possible to determine the position, velocity, and acceleration of a moving target. Parameter identification for a constant-acceleration motion model is studied, and the Cramer-Rao bound on motion parameter uncertainty is obtained for phaseand frequency-based estimation strategies, with the result that the preferred strategy depends upon the sensor/target geometry and target motion. Direct identification of the constant-acceleration trajectory model from the Doppler signal requires a 9-dimensional nonlinear optimization. Exploiting symmetry in the sensing geometry, a novel trajectory representation is presented which reduces the nonlinear optimization to one in 3 dimensions, with additional parameters obtained by linear identification. Baseball tracking using a network of four Doppler radars is experimentally demonstrated 相似文献
857.
Design of a three-axial accelerometer-seismometer, constructed on the basis of two-coordinate sensors (sensitive elements) of high and low accelerations, is considered in the paper. This instrument is applied for gravi-inertial measurements. Basic characteristics of the instrument are described, as well as the technique and results of its standardization. 相似文献
858.
The depth and range of underwater source can be estimated from measurements of propagation delay differences along multiple propagation paths. The accuracy of depth and range estimation using the Cramer-Rao lower bound is studied. The formulas derived can be used in conjunction with a propagation medium (nonconstant velocity profile). Explicit formulas for the bounds are derived for the case of homogeneous medium (constant velocity profile). Numerical examples are presented to illustrate the behavior of these bounds 相似文献
859.
Gaseous cavity at the base of an underwater projectile 总被引:1,自引:0,他引:1
A Dyment J.P Flodrops J.B Paquet D Dupuis D Marchand 《Aerospace Science and Technology》1998,2(8):489-504
The problem of the behavior of the gaseous cavity which is formed at the base of an underwater launched projectile is treated using different approaches. Asymptotic analysis is used to yield expressions for similarity parameters and a simplified hydrodynamic model of the initial stretching phase. A laboratory facility is described, in which launches can be simulated and analyzed by means of pressure measurements and high speed visualizations. Complete calculations are also performed using a numerical “Volume of Fluid” model solving the unsteady Navier-Stokes equations. Results from the three approaches are presented and compared during the cavity stretching phase. Finally, the thermodynamic aspects of the problem are examined. 相似文献
860.
S.V. Vadawale M. Shanmugam Y.B. Acharya A.R. Patel S.K. Goyal B. Shah A.K. Hait A. Patinge D. Subrahmanyam 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The remote X-ray fluorescence spectroscopy is a powerful technique to investigate the elemental abundances in the atmosphere-less planetary bodies. The experiment involves measuring spectra of fluorescent X-rays from lunar surface using a low energy X-ray detector onboard an orbiting satellite. Since the flux of fluorescent X-ray lines critically depend on the flux and spectrum of the incident solar X-rays, it is essential to have simultaneous and accurate measurement of X-ray from both Moon and Sun. In the context of Moon, this technique has been employed since early days of space exploration to determine elemental composition of lunar surface. However, so far it has not been possible to exploit it to its full potential due to various reasons. Therefore it is planned to continue the remote X-ray fluorescence spectroscopy experiment on-board Chandrayaan-2 which includes both lunar X-ray observations and solar X-ray observations as two separate payloads. The lunar X-ray observations will be carried out by Chandra Large Area Soft x-ray Spectrometer (CLASS) experiment; whereas the solar X-ray observations will be carried out by a separate payload, Solar X-ray Monitor (XSM). Here we present the overall design of the XSM instrument, the present development status as well as preliminary results of the laboratory model testing. XSM instrument will have two packages namely – XSM sensor package and XSM electronics package. XSM will accurately measure spectrum of Solar X-rays in the energy range of 1–15 keV with energy resolution ∼200 eV @ 5.9 keV. This will be achieved by using state-of-the-art Silicon Drift Detector (SDD), which has a unique capability of maintaining high energy resolution at very high incident count rate expected from Solar X-rays. XSM onboard Chandrayaan-2 will be the first experiment to use such detector for Solar X-ray monitoring. 相似文献