首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4713篇
  免费   5篇
  国内免费   23篇
航空   2256篇
航天技术   1773篇
综合类   18篇
航天   694篇
  2021年   30篇
  2019年   29篇
  2018年   73篇
  2017年   44篇
  2016年   45篇
  2014年   96篇
  2013年   133篇
  2012年   100篇
  2011年   152篇
  2010年   115篇
  2009年   202篇
  2008年   258篇
  2007年   109篇
  2006年   112篇
  2005年   118篇
  2004年   126篇
  2003年   152篇
  2002年   84篇
  2001年   156篇
  2000年   87篇
  1999年   115篇
  1998年   133篇
  1997年   101篇
  1996年   120篇
  1995年   149篇
  1994年   149篇
  1993年   85篇
  1992年   100篇
  1991年   45篇
  1990年   52篇
  1989年   111篇
  1988年   50篇
  1987年   45篇
  1986年   51篇
  1985年   173篇
  1984年   127篇
  1983年   91篇
  1982年   110篇
  1981年   158篇
  1980年   50篇
  1979年   32篇
  1978年   50篇
  1977年   37篇
  1976年   24篇
  1975年   51篇
  1974年   32篇
  1973年   39篇
  1972年   35篇
  1970年   31篇
  1969年   37篇
排序方式: 共有4741条查询结果,搜索用时 15 毫秒
121.
The designs of cold space telescopes, cryogenic and radiatively cooled, are similar in most elements and both benefit from orbits distant from the Earth. In particular such orbits allow the anti-sunward side of radiatively-cooled spacecraft to be used to provide large cooling radiators for the individual radiation shields. Designs incorporating these features have predictedT tel near 20 K. The attainability of such temperatures is supported by limited practical experience (IRAS, COBE). Supplementary cooling systems (cryogens, mechanical coolers) can be advantageously combined with radiative cooling in hybrid designs to provide robustness against deterioration and yet lower temperatures for detectors, instruments, and even the whole telescope. The possibility of such major additional gains is illustrated by the Very Cold Telescope option under study forEdison, which should offerT tel5 K for a little extra mechanical cooling capacity.  相似文献   
122.
Miller RH 《Acta Astronautica》1995,36(8-12):581-587
Human productivity during assembly operations in-orbit is dependent on limits set by fatigue, metabolic rates, learning, and assembly techniques. In order to quantify these effects, tests were conducted in the NASA MSFC Neutral Buoyancy Simulator, in the NASA KC-135 in parabolic flight, and in space with the EASE program during the Shuttle Atlantis mission 61-B. A separate program attempted to relate productivity to system costs. Because of the surprisingly high productivity which had been demonstrated in orbit, it was shown that assembly operations would have only a small effect on system costs at the present level of launch costs. The results of these continuing studies have been reported in a recent paper(1). They will be briefly summarized here and the results updated to include additional cost elements and to examine the effects of reductions in transportation costs, resulting from advances in technology and from increased demand, on system costs. It is shown that, as launch costs are reduced, the assembly costs could become an increasingly important component of the total system costs.  相似文献   
123.
To investigate changes in spatial orientation ability and walking performance following space flight, 7 astronaut subjects were asked pre- and post-flight to perform a goal directed locomotion paradigm which consisted of walking a triangular path with and without vision. This new paradigm, involving inputs from different sensory systems, allows quantification of several critical parameters, like orientation performance, walking velocities and postural stability, in a natural walking task. The paper presented here mainly focusses on spatial orientation performance quantified by the errors in walking the previously seen path without vision. Errors in length and reaching the corners did not change significantly from pre- to post-flight, while absolute angular errors slightly increased post-flight. The significant decrease in walking velocity and a change in head-trunk coordination while walking around the corners of the path observed post-flight may suggest that during re-adaptation to gravity the mechanisms which are necessary to perform the task have to be re-accomplished.  相似文献   
124.
The estimation of a multimodal linear system whose mode-to-mode transitions are described by a finite-state Markov chain is described. The problem has application in studying separation standards in an air traffic control environment. An optimal solution is formulated which is computationally infeasible. A suboptimal estimator is then derived which closely approximates the optimal estimator. An example is presented to illustrate the technique.  相似文献   
125.
This paper presents a review of theoretical and experimental results on stability and other unsteady properties of aircraft wakes. The basic mechanisms responsible for the propagation and the amplification of perturbation along vortices, namely the Kelvin waves and the cooperative instabilities, are first detailed. These two generic unsteady mechanisms are described by considering asymptotic linear stability analysis of model flows such as vortex filaments or Lamb–Oseen vortices. Extension of the linear analysis to more representative flows, using a biglobal stability approach, is also described. Experimental results obtained using LDV, hot wire and PIV in wind tunnels are presented and they are commented upon the light of theory.  相似文献   
126.
Spread spectrum signaling schemes have been proposed to counter unfriendly, electrical jamming threats. In order to establish their effectiveness, such schemes must be analyzed. This work takes a step in this direction by developing the susceptibility equation, or equivalently, the probability of error, of a direct sequence/frequency hopped (DS/FH), binary differential phase-shift keying (DPSK) system when subjected to a barrage jamming signal. Specific system models are established for the receiving system as well as for the jamming signal and the spread spectrum techniques. Both partial and full band jamming strategies are considered. Graphical results are presented with the conclusions summarizing the spread spectrum effectiveness and the deficiencies of the FH processing gain definition.  相似文献   
127.
The recently developed Radon-ambiguity transform (RAT) detects unknown linear frequency modulated (LFM) signals by computing line integrals through the origin of the signal's ambiguity function (AF) magnitude. It is shown that this method also detects the step LFM and frequency-derived polyphase pulse compression waveforms with varying performance degradation. Simulations are provided to estimate the detection loss relative to the LFM.  相似文献   
128.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
129.
The science payload on the Deep Impact mission includes a 1.05–4.8 μm infrared spectrometer with a spectral resolution ranging from R∼200–900. The Deep Impact IR spectrometer was designed to optimize, within engineering and cost constraints, observations of the dust, gas, and nucleus of 9P/Tempel 1. The wavelength range includes absorption and emission features from ices, silicates, organics, and many gases that are known to be, or anticipated to be, present on comets. The expected data will provide measurements at previously unseen spatial resolution before, during, and after our cratering experiment at the comet 9P/Tempel 1. This article explores the unique aspects of the Deep Impact IR spectrometer experiment, presents a range of expectations for spectral data of 9P/Tempel 1, and summarizes the specific science objectives at each phase of the mission.  相似文献   
130.
Hawkins  S.E.  Roelof  E.C.  Decker  R.B.  Ho  G.C.  Lario  D. 《Space Science Reviews》2001,97(1-4):269-272
We have performed a joint survey of anisotropic ≳40 keV electron events from August 1997 to September 2000 using the matched detectors on the Ulysses (ULS)/HI-SCALE and the ACE/EPAM instruments. A computer algorithm selected events with strong, statistically significant pitch-angle anisotropies. Electron pitch-angle distributions at ACE (∼1 AU) are often ‘beams’ that are strongly collimated along the local interplanetary magnetic field (IMF). These flare-associated impulsive injections can display rapid rise times (∼15 min) and slower decays, or more irregular intensity histories. At ULS, the electron intensities are lower and the time histories smoother, but strong anisotropies are still observable, indicating direct, nearly field-aligned propagation outward from the Sun. We focus on four event periods, selected from the survey, during times when the angle between the footpoints of the IMF lines intersecting ACE and ULS is small. These events span three full years and cover a wide range of distances and heliographic latitudes. We found one reasonably good association between impulsive electron events at ACE and ULS, and two events with small field-aligned gradients. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号