A “mother-daughter” rocket code-named “Electron 2” was launched from And?ya, Northern Norway in November, 1978. The “daughter”, carrying a 10 keV electron accelerator, was separated from the “mother” payload with a speed of 0.4 m/s. A series of plasma diagnostic instruments were included on the “mother” to study effects produced by the interaction between the electron beam and the ionospheric plasma. Results obtained by two different plasma probes are presented. It was found that pronounced changes in the ambient electron population took place in regions penetrated by the electron beam. Estimates of the dimensions of the disturbed region are presented. 相似文献
A better understanding of cometary dust optical properties has been derived from extensive observations of comet Halley, complemented by other cometary observations at large phase angles and/or in the infrared. Also, further analysis of IRAS observations and improvements in inversion techniques for zodiacal light have led to some progress in our knowledge of interplanetary dust.
Synthetic curves for phase angle dependence of intensity and polarization are presented, together with typical albedo values. The results obtained for interplanetary dust are quite reminiscent of those found for comets. However, the heterogeneity of the interplanetary dust cloud is demonstrated by the radial dependence of its local polarization and albedo; these parameters are also found to vary with inclination of the dust grains' orbits with respect to the ecliptic. Such results suggest drastic alterations with temperature in the texture of cometary dust, and would favor an important asteroidal component in the zodiacal cloud. 相似文献
The possibilities of using spectrographic observations of microwave radio emission as a solar flare plasma diagnostic are discussed. The spectral fine structure of the emission is interpreted in the context of plasma emission mechanisms. The balance equations for particles and plasma turbulence together with the transfer equations for electromagnetic waves in a plasma are solved for a model containing a diverging magnetic loop. As a result of the analysis of the blip-type spectral feature, the structure of energy release region and the unperturbed plasma concentration in the preflare loop are evaluated. The number of accelerated electrons and the intensity of the plasma turbulence in the source region are estimated using the properties of the weak continuum emission following the blip. Based on the degree of circular polarization of both the narrow band and the continuum emission, estimates for the external magnetic field strength and the angular width of the radiating plasma turbulence have been obtained. 相似文献
Horseshoe orbits in the restricted three-body problem have been mostly considered in the Sun–Jupiter system and, in recent years, in the Sun–Earth system. Here, these orbits have been used to find asteroids that have orbits of this kind. We have built a planar family of horseshoe orbits in the Earth–Moon system and determined the points of planar and 1/1 vertical resonances on this family. We have presented examples of orbits generated by these spatial families. 相似文献
It is believed that a large fraction of the total energy released in a solar flare goes initially into acceleratedelectrons. These electrons generate the observed hard X-ray bremsstrahlung as they lose most of their energy by coulomb collisions in the lower corona and chromosphere. Results from the Solar Maximum Mission showed that there may be even more energy in accelerated electrons with energies above 25 keV than in the soft X-ray emitting thermal plasma. If this is the case, it is difficult to understand why the Neupert Effect — the empirical result that for many flares the time integral of the hard X-ray emission closely matches the temporal variation of the soft X-ray emission — is not more clearly observed in many flares. From recent studies, it appears that the fraction of the released energy going into accelerated electrons is lower, on average, for smaller flares than for larger flares. Also, from relative timing differences, about 25% of all flares are inconsistent with the Neupert Effect. The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is uniquely capable of investigating the Neupert Effec since it covers soft X-rays down to 3 keV (when both attenuators are out of the field of view) and hard X-rays with keV energy resolution, arcsecond-class angular resolution, and sub-second time resolution. When combined with the anticipated observations from the Soft X-ray Imager on the next GOES satellite, these observations will provide us with the ability to track the Neupert Effect in space and time and learn more about the relation between plasma heating and particle acceleration. The early results from RHESSI show that the electron spectrum extends down to as low as 10 keV in many flares, thus increasing the total energy estimates of the accelerated electrons by an order of magnitude or more compared with the SMM values. This combined with the possible effects of filling factors smaller than unity for the soft X-ray plasma suggest that there is significantly more energy in nonthermal electrons than in the soft X-ray emitting plasma in many flares. 相似文献
Solar and space radiation have been monitored using the R3D-B2 radiation risks radiometer-dosimeter on board a recent space flight on the Russian satellite Foton M2 within the ESA Biopan 5 facility mounted on the outside of the satellite exposed to space conditions. The solar radiation has been assayed in four wavelength bands (UV-C, 170–280 nm, UV-B, 280–315 nm), UV-A (315–400 nm) and PAR (photosynthetic active radiation, 400–700 nm). The data show an increasing tumbling rotation of the satellite during the mission. The photodiodes do not show a cosine response to the incident light which has been corrected. After calibration of the signals using the extraterrestrial spectrum, doses have been calculated for each orbit, for each day and for the total mission as basic data for the biological material which has been exposed in parallel in the Biopan facility. Cosmic ionizing radiation has been monitored and separated in 256 deposited energy spectra, which were further used for determination of the absorbed dose rate and flux. Basic data tables were prepared to be used by other Biopan 5 experiments. The paper summarizes the results for the Earth radiation environment at the altitude (262–304 km) of the Foton M2 spacecraft. Comparisons with the predictions of NASA Earth radiation environment experimental models AE-8 and AP-8, and the PSB97 model are also presented, which calculate the fluxes of ionizing radiation from a simulation. AP-8 is a model for trapped radiation. 相似文献
The U.S. Naval Observatory Master Clock is used to steer the Global Positioning System (GPS) time. Time transfer data consisting of the difference between the Master Clock and GPS time has been acquired from all satellites in the GPS constellation covering a time period from 10 October 1995 to 12 December 1995. A Fourier analysis of the data shows a distinct peak in the Fourier spectrum corresponding to approximately a one day period. In order to determine this period more accurately, correlations are computed between successive days of the data, and an average of twenty five correlation functions shows that there exists a correlation equal to 0.52 at delay time 23 h 56 min, which corresponds to twice the average GPS satellite period. This correlation indicates that GPS time, as measured by the U.S. Naval Observatory, is periodic with respect to the Master Clock, with a period of 23 h and 56 min. An autocorrelation of a five day segment of data indicates that these correlations persist for four successive days 相似文献
The Applications Technology Satellite (ATS-6), the most powerful, most sophisticated, most versatile communications satellite flown to date, is the last of NASA's experimental satellites intended to demonstrate major advances in communications and spacecraft technology. It is a multipurpose, multidisciplinary spacecraft whose principal objectives were to demonstrate a large, unfurlable antenna structure and precise pointing and attitude control in the synchronous orbit The spacecraft carries 27 different experiments, 3 of which demonstrate users' applications of satellite communications. Significant advances in antenna technology, precise attitude control, materials technology, spacecraft structures, and thermal control have been successfully demonstrated. The most significant accomplishments of the ATS-6 mission are the demonstration of the practicality of satellite broadcasting to small, simple, inexpensive ground stations and the uses of this potential service in the solution of social problems involving education and health care. The success of these initial demonstrations has led ATS-6 experimenters and potential users to incorporate a Public Service Satellite Consortium dedicated to the provision of satellite broadcasting services for educational and health-care applications. 相似文献
Cytoskeleton recently attracted wide attention of cell and molecular biologists due to its crucial role in gravity sensing and trunsduction. Most of cytoskeletal research is conducted by the means of immunohistochemical reactions, different modifications of which are beneficial for the ground-based experiments. But for the performance onboard the space vehicles, they represent quite complicated technique which requires time and special skills for astronauts. In addition, immunocytochemistry provides only static images of the cytoskeleton arrangement in fixed cells while its localization in living cells is needed for the better understanding of cytoskeletal function. In this connection, we propose a new approach for cytoskeletal visualization onboard the ISS, namely, application of green fluorescent protein (GFP) from Aequorea victoria, which has the unique properties as a marker for protein localization in vivo. The creation of chimerical protein-GFP gene constructs, obtaining the transformed plant cells possessed protein-GFP in their cytoskeletal composition will allow receiving a simple and efficient model for screening of the cytoskeleton functional status in microgravity. 相似文献
Stability and dynamics of a series configuration peak-power tracking (PPT) system are analyzed. The operating modes of the system, as well as mode transitions, are investigated based on qualitative graphical representations of dc load lines at various interfaces of the system. Analysis of multiloop control in the PPT mode is discussed. This includes the design of the inner voltage loop and analysis of the closed-loop system stability around the peak-power point. For an optimum dynamic performance and stability, design parameters of the inner voltage loop and the outer PPT loop are identified. Experimental verifications, supported by simulation results, are performed 相似文献