A computer simulation model capable of predicting the performance nce of a high-dta-rate end-to-end communication system with adaptive equalization is described in this paper. The model is used to characterize the behavior of NASA's proposed tracking and data relay satellite system (TDRSS), while accounting for signal distortion effects due to operational conditions and the required hardware are components necessary to fulfill mission objectives. Specifically, the performance of the TDRSS high-dta-rate lik (300 Mbps) is defined, both with and without adaptive equalization. 相似文献
In this paper we describe a three-dimensional, multicellular tissue-equivalent model, produced in NASA-designed, rotating wall bioreactors using mammalian cells engineered for genomic containment of multiple copies of defined target genes for genotoxic assessment. Rat 2 lambda fibroblasts, genetically engineered to contain high-density target genes for mutagenesis (Stratagene, Inc., Austin, TX), were cocultured with human epithelial cells on Cytodex beads in the High Aspect Ratio Bioreactor (Synthecon, Inc, Houston, TX). Multi-bead aggregates were formed by day 5 following the complete covering of the beads by fibroblasts. Cellular retraction occurred 8-14 days after coculture initiation culminating in spheroids retaining few or no beads. Analysis of the resulting tissue assemblies revealed: multicellular spheroids, fibroblasts synthesized collagen, and cell viability was retained for the 30-day test period after removal from the bioreactor. Quantification of mutation at the LacI gene in Rat 2 lambda fibroblasts in spheroids exposed to 0-2 Gy neon using the Big Blue color assay (Stratagene, Inc.), revealed a linear dose-response for mutation induction. Limited sequencing analysis of mutant clones from 0.25 or 1 Gy exposures revealed a higher frequency of deletions and multiple base sequencing changes with increasing dose. These results suggest that the three-dimensional, multicellular tissue assembly model produced in NASA bioreactors are applicable to a wide variety of studies involving the quantification and identification of genotoxicity including measurement of the inherent damage incurred in Space. 相似文献
The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔEFWHM/E≈15 %. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance. 相似文献
A model and a technique for calculating polymer composite materials with an ellipsoid-shaped filler that take into account the influence of system porosity, particle anisodiametry and a boundary layer on the effective heat conduction are proposed. The results of calculations made by numerical methods are in a good agreement with the well-known statistic and Odolevskii, Maxwell, and Dul’nev matrix models. 相似文献
A system for recording and analysis of flight information including the technical condition of a control object and the state of its controller’s health in real time aboard a flight vehicle and in ground-based air traffic control centers is described. 相似文献
The SCIAMACHY instrument on board Envisat is able to measure nearly all vibrational transitions of mesospheric hydroxyl – from the ultraviolet to the near infrared spectral region.
In this paper, we analyze SCIAMACHY limb emission data in the 1000–1750 nm spectral region by means of a new vibrational non-LTE model of OH. Several hydroxyl hotbands are identified. Vibrational non-LTE model calculations applying different collisional relaxation models are able to reproduce the measured spectra. Best agreement between model calculations and measured spectra is obtained, if a combination of multiquantum and step ladder single-quantum relaxation model is applied. Emissions from the OH(v = 9) vibrational state are used to derive chemical heating rates from the SCIAMACHY spectra. Instantaneous heating rates are in the order of 10 K/day. 相似文献
In recent years the variability of the cosmic ray flux has become one of the main issues not only for the interpretation of the abundances of cosmogenic isotopes in cosmochronic archives like, e.g., ice cores, but also for its potential impact on the terrestrial climate. It has been re-emphasized that the cosmic ray flux is not only varying due to the solar activity-induced changes of the solar wind but also in response to the changing state of the interstellar medium surrounding the heliosphere. We demonstrate the significance of these external boundary condition changes along the galactic orbit of the Sun for the flux as well as spectra of cosmic rays. Such interstellar–terrestrial relations are a major topic of the International Heliophysical Year 2007. 相似文献
We examined two consecutive plasma sheet oscillation and dipolarization events observed by Cluster in the magnetotail, which are associated with a pseudo-breakup and a small substorm monitored by the IMAGE spacecraft. Energy input from the solar wind and an associated enhancement of the cross-tail current lead to current sheet thinning and plasma sheet oscillations of 3–5 min periods, while the pseudo-breakups occur during the loading phase within a spatially limited area, accompanied by a localized dipolarization observed by DSP TC1 or GOES 12. That is, the so-called “growth phase” is a preferable condition for both pseudo-breakup and plasma sheet oscillations in the near-Earth magnetotail. One of the plasma sheet oscillation events occurs before the pseudo-breakup, whereas the other takes place after pseudo-breakup. Thus there is no causal relationship between the plasma sheet oscillation events and pseudo-breakup. As for the contribution to the subsequent small substorm, the onset of the small substorm took place where the preceding plasma sheet oscillations can reach the region. 相似文献