首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   0篇
  国内免费   2篇
航空   115篇
航天技术   42篇
综合类   1篇
航天   33篇
  2019年   3篇
  2018年   6篇
  2017年   4篇
  2015年   1篇
  2014年   4篇
  2013年   4篇
  2012年   8篇
  2011年   10篇
  2010年   7篇
  2009年   8篇
  2008年   6篇
  2007年   6篇
  2006年   5篇
  2005年   1篇
  2004年   3篇
  2003年   7篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   8篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   4篇
  1992年   6篇
  1991年   1篇
  1989年   8篇
  1988年   2篇
  1986年   3篇
  1985年   14篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   9篇
  1979年   2篇
  1978年   5篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   3篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1967年   3篇
  1966年   2篇
  1964年   1篇
排序方式: 共有191条查询结果,搜索用时 15 毫秒
21.
When structures made of composite materials are designed to be used in load bearing applications, a primary consideration is the evaluation of their load carrying capacity in compression. To this end, a vast number of research investigations, whose main objective is linked to ascertaining the compressive strength of a composite structure has been carried out and/or is currently being performed. Apart from its practical significance, the complexity associated with the task of predicting compression strength is the main reason for the overt attention this problem is receiving. One such difficulty has been associated with testing. When laboratory tests are carried out to determine compression strength, structural instabilities dictated by the geometry of the structure may interfere with material strength dictated by the mechanical properties of the constituents and their alignment and geometry (needed to describe the microstructure of the material). In addition stress concentrations may occur at undesirable locations. In Part I, issues pertaining to compression testing and micromechanical failure theories are reviewed.  相似文献   
22.
Despite a rich legacy of impressive technological accomplishments, the government acquisition of advanced space systems is increasingly synonymous with schedule slips and cost overruns. Program reviews have suggested that investing more in centralized and strategic research and development outside particular programs will reduce technical uncertainties and improve cost and schedule outcomes. This paper suggests roles for a centralized technology office by examining the methods available in the literature for managing portfolios of research projects.  相似文献   
23.
Basaltic glasses (hyaloclastite) are a widespread habitat for life in volcanic environments, yet their interior physical conditions are poorly characterized. We investigated the characteristics of exposed weathered basaltic glass from a surface outcrop in Iceland, using microprobes capable of continuous sensing, to determine whether the physical conditions in the rock interior are hospitable to microbial life. The material provided thermal protection from freeze-thaw and rapid temperature fluctuations, similar to data reported for other rock types. Water activity experiments showed that at moisture contents less than 13% wet weight, the glass and its weathering product, palagonite, had a water activity below levels suitable for bacterial growth. In pore spaces, however, these higher moisture conditions might be maintained for many days after a precipitation event. Gas exchange between the rock interior and exterior was rapid (< 10 min) when the rocks were dry, but when saturated with water, equilibration took many hours. During this period, we demonstrated the potential for low oxygen conditions within the rock caused by respiratory stimulation of the heterotrophic community within. These conditions might exist within subglacial environments during the formation of the rocks or in micro-environments in the interior of exposed rocks. The experiments showed that microbial communities at the site studied here could potentially be active for 39% of the year, if the depth of the community within the outcrop maintains a balance between access to liquid water and adequate protection from freezing. In the absence of precipitation, the interior of weathered basaltic glass is an extreme and life-limiting environment for microorganisms on Earth and other planets.  相似文献   
24.
As both Earth and Mars have had similar environmental conditions at least for some extended time early in their history (Jakosky and Phillips in Nature 412:237–244, 2001), the intriguing question arises whether life originated and evolved on Mars as it did on Earth (McKay and Stoker in Rev. Geophys. 27:189–214, 1989). Conceivably, early autotrophic life on Mars, like early life on Earth, used irreversible enzymatically enhanced metabolic processes that would have fractionated stable isotopes of the elements C, N, S, and Fe. Several important assumptions are made when such isotope fractionations are used as a biomarker. The purpose of this article is two-fold: (1) to discuss these assumptions for the case of carbon and to summarize new insights in abiologic reactions, and (2) to discuss the use of other stable isotope systems as a potential biomarker. It is concluded that isotopic biomarker studies on Mars will encounter several important obstacles. In the case of carbon isotopes, the most important obstacle is the absence of a contemporary abiologic carbon reservoir (such as carbonate deposits on Earth) to act as isotopic standard. The presence of a contemporary abiologic sulfate reservoir (evaporite deposits) suggests that sulfur isotopes can be used as a potential biomarker for sulfate-reducing bacteria. The best approach for tracing ancient life on Mars will be to combine several biomarker approaches; to search for complexity, and to combine small-scale isotopic variations with chemical, mineralogical, and morphological observations. An example of such a study can be a layer-specific correlation between δ 13C and δ 34S within an ancient Martian evaporite, which morphologically resembles the typical setting of a shallow marine microbial mat.  相似文献   
25.
The fossil record of the subsurface biosphere is sparse. Results obtained on subsurface filamentous fabrics (SFF) from >225 paleosubsurface sites in volcanics, oxidized ores, and paleokarst of subrecent to Proterozoic age are presented. SFF are mineral encrustations on filamentous or fibrous substrates that formed in subsurface environments. SFF occur in association with low-temperature aqueous mineral assemblages and consist of tubular, micron-thick (median 1.6 micron) filaments in high spatial density, which occur as irregular masses, matted fabrics, and vertically draped features that resemble stalactites. Micron-sized filamentous centers rule out a stalactitic origin. Morphometric analysis of SFF filamentous forms demonstrates that their shape more closely resembles microbial filaments than fibrous minerals. Abiogenic filament-like forms are considered unlikely precursors of most SFF, because abiogenic forms differ in the distribution of widths and have a lower degree of curvature and a lower number of direction changes. Elemental analyses of SFF show depletion in immobile elements (e.g., Al, Th) and a systematic enrichment in As and Sb, which demonstrates a relation to environments with high flows of water. Sulfur isotopic analyses are consistent with a biological origin of a SFF sample from a Mississippi Valley-Type deposit, which is consistent with data in the literature. Fe isotopes in SFF and active analogue systems, however, allow no discrimination between biogenic and abiogenic origins. The origin of most SFF is explained as permineralized remains of microbial filaments that possibly record rapid growth during phases of high water flow that released chemical energy. It is possible that some SFF formed due to encrustation of mineral fibers. SFF share similarities with Microcodium from soil environments. SFF are a logical target in the search for past life on Mars. The macroscopic nature of many SFF allows for their relatively easy in situ recognition and targeting for more detailed microstructural and geochemical analysis.  相似文献   
26.
A central question in astrobiology is whether life exists elsewhere in the universe. If so, is it related to Earth life? Technologies exist that enable identification of DNA- or RNA-based microbial life directly from environmental samples here on Earth. Such technologies could, in principle, be applied to the search for life elsewhere; indeed, efforts are underway to initiate such a search. However, surveying for nucleic acid-based life on other planets, if attempted, must be carried out with caution, owing to the risk of contamination by Earth-based life. Here we argue that the null hypothesis must be that any DNA discovered and sequenced from samples taken elsewhere in the universe are Earth-based contaminants. Experience from studies of low-biomass ancient DNA demonstrates that some results, by their very nature, will not enable complete rejection of the null hypothesis. In terms of eliminating contamination as an explanation of the data, there may be value in identification of sequences that lie outside the known diversity of the three domains of life. We therefore have examined whether a fourth domain could be readily identified from environmental DNA sequence data alone. We concluded that, even on Earth, this would be far from trivial, and we illustrate this point by way of examples drawn from the literature. Overall, our conclusions do not bode well for planned PCR-based surveys for life on Mars, and we argue that other independent biosignatures will be essential in corroborating any claims for the presence of life based on nucleic acid sequences.  相似文献   
27.
28.
Using HXIS data, we have studied further development of the coronal arch extending towards SE above the active region (AR) No.17255 in November 1980. The disappearance of that arch was followed by the appearance of another arch-like structure towards SW. We have studied the development of the new structure and classified it as an arch interconnecting AR 17255 with AR 17251, which was ~30° to the west. We estimate physical characteristics of this interconnection and compare them with Skylab data and the earlier arches.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号