首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   0篇
  国内免费   1篇
航空   73篇
航天技术   35篇
综合类   2篇
航天   61篇
  2021年   7篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   7篇
  2013年   6篇
  2012年   2篇
  2011年   14篇
  2010年   10篇
  2009年   6篇
  2008年   10篇
  2007年   11篇
  2006年   4篇
  2005年   17篇
  2004年   4篇
  2003年   3篇
  2002年   6篇
  2000年   6篇
  1999年   8篇
  1998年   3篇
  1997年   3篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   6篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
  1971年   2篇
  1968年   2篇
排序方式: 共有171条查询结果,搜索用时 15 毫秒
21.
Pioneering studies of Precambrian impact fallout units and associated tsunami deposits in the Hamersley Basin, Pilbara Craton, Western Australia, by B.M. Simonson and S.W. Hassler, document a range of tsunami deposits associated with impact fallout units whose impact connection is identified by associated microtektites and microkrystites (condensation spherules). The impact connection of these particles is demonstrated by iridium anomalies, unique platinum group elements patterns, and Ni-rich mineral phases. Densely packed tsunami-transported fragments and boulders overlie microkrystite units of the >2629 +/- 5 Ma top Jeerinah Impact Layer (JIL). Tsunami events closely follow spherule settling associated with the 2561 +/- 8 Ma Spherule Marker Bed SMB-1 and SMB-2 impact events, Bee Gorge Member, Wittenoom Formation. The two impact cycles are separated by a stratigraphically consistent silicified black siltstone, representing a "Quiet Interval." The SMB turbidites display turbulence eddies, climbing ripples, conglomerate pockets, slumps, and waterlogged sediment deformation features. Consequences of tsunami in the probably contemporaneous Carawine Dolomite (Pb-Pb carbonate ages of approximately 2.56-2.54 Ga), eastern Hamersley Basin, include sub-autochthonous below-wave base excavation and megabrecciation of sea floor substrata, resulting in a unique 10-30-m-thick spherule-bearing megabreccia marker mapped over a nearly 100-km north-south strike distance in the east Hamersley Basin. The field relations suggest a pretsunami settling of the bulk of the spherules. Tsunami wave effects include: (1). dispersal of the spherule-rich soft upper sea floor sediments as a subaqueous mud cloud and (2). excavation of consolidated substrata below the soft sediment zone. Excavation and megabrecciation included injection of liquefied spherule-bearing microbreccia into dilated fractures in the disrupted underlying carbonates. Near-perfect preservation of the spherules within the basal microbreccia veins suggests tsunami-induced hydraulic pressures locally exceeded lithostatic pressure. Late-stage settling of spherule-bearing mud clouds in the wake of the tsunami is represented by an abundance of spherules in the uppermost microbreccia zones of the megabreccia pile. From the deep below-wave base facies of the Carawine Dolomite, tsunami wave amplitudes may have exceeded 200 m depth. The approximately 2.47-2.50 Ga DGS4 (S4 Macroband, Dales Gorge Member, Brockman Iron Formation) fallout units include exotic chert and carbonate boulders transported by tsunami following settling of a 10-20-cm-thick microkrystite and microtektite-rich unit. Seismic perturbations preceding deposition of the JIL and SMB fallout units are marked by rip-up clasts. The geochemistry of microkrystites and microtektites suggests impact fallout originated from impacts in simatic/oceanic crustal regions, although tsunami waves may have originated from seismically reactivated faults and plate margins located at distance from the impact craters.  相似文献   
22.
The presented study examines contingency target selection and trajectory design for NASA’s Near-Earth Asteroid Scout mission under the assumption of a missed lunar gravity assist. Two previously considered asteroids are selected as potential targets for the given scenario based on favorable orbital characteristics for launch dates ranging from June 27, 2020 through July 26, 2020. Initially, a simplified circular restricted 3-body problem + ideal solar sail model is utilized to survey trajectory options for a month-long launch window. Selected solutions from this data set are then converged in an N-body ephemeris + non-ideal sail model. Results suggest that NEA Scout can still perform asteroid rendezvous mission under the missed lunar gravity assist scenario with new targets, 2019 GF1, 2018 PK21, and 2007 UN12, based on the target launch dates. Further target assessment is carried out for 165 days beyond the current June 27, 2020 launch date.  相似文献   
23.
Self-organization is a property of dissipative nonlinear processes that are governed by a global driving force and a local positive feedback mechanism, which creates regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to random processes. Here we investigate for the first time a comprehensive number of (17) self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous “order out of randomness”, during the evolution from an initially disordered system to an ordered quasi-stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (mechanical or gyromagnetic) resonances. The global driving force can be due to gravity, electromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective (Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or a loss-cone instability. Physical models of astrophysical self-organization processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simulations. Analytical formulations of self-organizing systems generally involve coupled differential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type.  相似文献   
24.
25.
Historically, colony-forming units as determined by plate cultures have been the standard unit for microbiological analysis of environmental samples, medical diagnostics, and products for human use. However, the time and materials required make plate cultures expensive and potentially hazardous in the closed environments of future NASA missions aboard the International Space Station and missions to other Solar System targets. The Limulus Amebocyte Lysate (LAL) assay is an established method for ensuring the sterility and cleanliness of samples in the meat-packing and pharmaceutical industries. Each of these industries has verified numerical requirements for the correct interpretation of results from this assay. The LAL assay is a rapid, point-of-use, verified assay that has already been approved by NASA Planetary Protection as an alternate, molecular method for the examination of outbound spacecraft. We hypothesize that standards for molecular techniques, similar to those used by the pharmaceutical and meat-packing industries, need to be set by space agencies to ensure accurate data interpretation and subsequent decision making. In support of this idea, we present research that has been conducted to relate the LAL assay to plate cultures, and we recommend values obtained from these investigations that could assist in interpretation and analysis of data obtained from the LAL assay.  相似文献   
26.
The Mars Science Laboratory (MSL) has an instrument package capable of making measurements of past and present environmental conditions. The data generated may tell us if Mars is, or ever was, able to support life. However, the knowledge of Mars' past history and the geological processes most likely to preserve a record of that history remain sparse and, in some instances, ambiguous. Physical, chemical, and geological processes relevant to biosignature preservation on Earth, especially under conditions early in its history when microbial life predominated, are also imperfectly known. Here, we present the report of a working group chartered by the Co-Chairs of NASA's MSL Project Science Group, John P. Grotzinger and Michael A. Meyer, to review and evaluate potential for biosignature formation and preservation on Mars. Orbital images confirm that layered rocks achieved kilometer-scale thicknesses in some regions of ancient Mars. Clearly, interplays of sedimentation and erosional processes govern present-day exposures, and our understanding of these processes is incomplete. MSL can document and evaluate patterns of stratigraphic development as well as the sources of layered materials and their subsequent diagenesis. It can also document other potential biosignature repositories such as hydrothermal environments. These capabilities offer an unprecedented opportunity to decipher key aspects of the environmental evolution of Mars' early surface and aspects of the diagenetic processes that have operated since that time. Considering the MSL instrument payload package, we identified the following classes of biosignatures as within the MSL detection window: organism morphologies (cells, body fossils, casts), biofabrics (including microbial mats), diagnostic organic molecules, isotopic signatures, evidence of biomineralization and bioalteration, spatial patterns in chemistry, and biogenic gases. Of these, biogenic organic molecules and biogenic atmospheric gases are considered the most definitive and most readily detectable by MSL.  相似文献   
27.
Satellite-based limb occultation measurements are well suited for the detection and mapping of polar stratospheric clouds (PSCs) and cirrus clouds. PSCs are of fundamental importance for the formation of the Antarctic ozone hole that occurs every year since the early 1980s in Southern Hemisphere spring. Despite progress in the observation, modeling and understanding of PSCs in recent years, there are still important questions which remain to be resolved, e.g. PSC microphysics, composition, formation mechanisms and long-term changes in occurrence. In addition, it has recently become clear that cirrus clouds significantly affect the global energy balance and climate, due to their influence on atmospheric thermal structure.  相似文献   
28.
The European Space Agency's ExoMars mission will seek evidence of organic compounds of biological and non-biological origin at the martian surface. One of the instruments in the Pasteur payload may be a Life Marker Chip that utilizes an immunoassay approach to detect specific organic molecules or classes of molecules. Therefore, it is necessary to define and prioritize specific molecular targets for antibody development. Target compounds have been selected to represent meteoritic input, fossil organic matter, extant (living, recently dead) organic matter, and contamination. Once organic molecules are detected on Mars, further information is likely to derive from the detailed distribution of compounds rather than from single molecular identification. This will include concentration gradients beneath the surface and gradients from generic to specific compounds. The choice of biomarkers is informed by terrestrial biology but is wide ranging, and nonterrestrial biology may be evident from unexpected molecular distributions. One of the most important requirements is to sample where irradiation and oxidation are minimized, either by drilling or by using naturally excavated exposures. Analyzing regolith samples will allow for the search of both extant and fossil biomarkers, but sequential extraction would be required to optimize the analysis of each of these in turn.  相似文献   
29.
30.
Issues about commercialization of space have been a growing concern in the past decade for the space community. This paper focuses on the work from a team of 51 students attending the Summer Session Program of the International Space University in Bremen, Germany. CASH 2021 (Commercial Access and Space Habitation) documents a plan that identifies commercial opportunities for space utilization that will extend human presence in space, and will chart the way forward for the next 20 years. The group selected four commercial sectors that show the most promise for the future: tourism, entertainment, space system service, assembly and debris removal, and research and development/production. The content of this document presents the results of their research. Historical activities in each of the commercial sectors are reviewed along with the current market situation. To provide a coherent background for future commercialization possibilities a scenario has been developed. This scenario includes a postulated upon ideal future and includes social, political and economic factors that may affect the space industry over the timeline of the study. The study also presents a roadmap, within the limited optimistic scenario developed, for the successful commercialization of space leading to future human presence in space. A broad range of commercially viable opportunities, not only within the current limits of the International Space Station, but also among the many new developments that are expected by 2021 are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号