首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   0篇
航空   43篇
航天技术   9篇
航天   18篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   6篇
  2011年   7篇
  2010年   3篇
  2009年   3篇
  2008年   7篇
  2007年   4篇
  2006年   5篇
  2005年   7篇
  2004年   2篇
  2001年   6篇
  1999年   2篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1992年   1篇
  1985年   1篇
  1978年   1篇
排序方式: 共有70条查询结果,搜索用时 140 毫秒
61.
Recent data from space missions reveal that there are ongoing climatic changes and erosive processes that continuously modify surface features of Mars. We have investigated the seasonal dynamics of a number of morphological features located at Inca City, a representative area at high southern latitude that has undergone seasonal processes. By integrating visual information from the Mars Orbiter Camera on board the Mars Global Surveyor and climatic cycles from a Mars' General Circulation Model, and considering the recently reported evidence for the presence of water-ice and aqueous precipitates on Mars, we propose that a number of the erosive features identified in Inca City, among them spiders, result from the seasonal melting of aqueous salty solutions.  相似文献   
62.
Marklund  Göran  André  Mats  Lundin  Rickard  Grahn  Sven 《Space Science Reviews》2004,111(3-4):377-413
The success of the Swedish small satellite program, in combination with an active participation by Swedish research groups in major international missions, has placed Sweden in the frontline of experimental space research. The program started with the development of the research satellite Viking which was launched in 1986, for detailed investigations of the aurora. To date, Sweden has developed and launched a total of six research satellites; five for space plasma investigations; and the most recent satellite Odin, for research in astronomy and aeronomy. These fall into three main categories according to their physical dimension, financial cost and level of ambition: nano-satellites, micro-satellites, and mid-size satellites with ambitious scientific goals. In this brief review we focus on five space plasma missions, for which operations have ended and a comprehensive scientific data analysis has been conducted, which allows for a judgement of their role and impact on the progress in auroral research. Viking and Freja, the two most well-known missions of this program, were pioneers in the exploration of the aurora. The more recent satellites, Munin, Astrid, and Astrid-2 (category 1 and 2), proved to be powerful tools, both for testing new technologies and for carrying out advanced science missions. The Swedish small satellite program has been internationally recognized as cost efficient and scientifically very successful.  相似文献   
63.
The particular mineralogy formed in the acidic conditions of the Río Tinto has proven to be a first-order analogue for the acid-sulfate aqueous environments of Mars. Therefore, studies about the formation and preservation of biosignatures in the Río Tinto will provide insights into equivalent processes on Mars. We characterized the biomolecular patterns recorded in samples of modern and old fluvial sediments along a segment of the river by means of an antibody microarray containing more than 200 antibodies (LDCHIP200, for Life Detector Chip) against whole microorganisms, universal biomolecules, or environmental extracts. Samples containing 0.3-0.5?g of solid material were automatically analyzed in situ by the Signs Of LIfe Detector instrument (SOLID2), and the results were corroborated by extensive analysis in the laboratory. Positive antigen-antibody reactions indicated the presence of microbial strains or high-molecular-weight biopolymers that originated from them. The LDCHIP200 results were quantified and subjected to a multivariate analysis for immunoprofiling. We associated similar immunopatterns, and biomolecular markers, to samples with similar sedimentary age. Phyllosilicate-rich samples from modern fluvial sediments gave strong positive reactions with antibodies against bacteria of the genus Acidithiobacillus and against biochemical extracts from Río Tinto sediments and biofilms. These samples contained high amounts of sugars (mostly polysaccharides) with monosaccharides like glucose, rhamnose, fucose, and so on. By contrast, the older deposits, which are a mix of clastic sands and evaporites, showed only a few positives with LDCHIP200, consistent with lower protein and sugar content. We conclude that LDCHIP200 results can establish a correlation between microenvironments, diagenetic stages, and age with the biomarker profile associated with a sample. Our results would help in the search for putative martian biomarkers in acidic deposits with similar diagenetic maturity. Our LDCHIP200 and SOLID-like instruments may be excellent tools for the search for molecular biomarkers on Mars or other planets.  相似文献   
64.
In this paper we review the possible radiation mechanisms for the observed non-thermal emission in clusters of galaxies, with a primary focus on the radio and hard X-ray emission. We show that the difficulty with the non-thermal, non-relativistic Bremsstrahlung model for the hard X-ray emission, first pointed out by Petrosian (Astrophys. J. 557, 560, 2001) using a cold target approximation, is somewhat alleviated when one treats the problem more exactly by including the fact that the background plasma particle energies are on average a factor of 10 below the energy of the non-thermal particles. This increases the lifetime of the non-thermal particles, and as a result decreases the extreme energy requirement, but at most by a factor of three. We then review the synchrotron and so-called inverse Compton emission by relativistic electrons, which when compared with observations can constrain the value of the magnetic field and energy of relativistic electrons. This model requires a low value of the magnetic field which is far from the equipartition value. We briefly review the possibilities of gamma-ray emission and prospects for GLAST observations. We also present a toy model of the non-thermal electron spectra that are produced by the acceleration mechanisms discussed in an accompanying paper Petrosian and Bykov (Space Sci. Rev., 2008, this issue, Chap. 11).  相似文献   
65.
Magnetism, iron minerals, and life on Mars   总被引:1,自引:0,他引:1  
A short critical review is provided on two questions linking magnetism and possible early life on Mars: (1) Did Mars have an Earth-like internal magnetic field, and, if so, during which period and was it a requisite for life? (2) Is there a connection between iron minerals in the martian regolith and life? We also discuss the possible astrobiological implications of magnetic measurements at the surface of Mars using two proposed instruments. A magnetic remanence device based on magnetic field measurements can be used to identify Noachian age rocks and lightning impacts. A contact magnetic susceptibility probe can be used to investigate weathering rinds on martian rocks and identify meteorites among the small regolith rocks. Both materials are considered possible specific niches for microorganisms and, thus, potential astrobiological targets. Experimental results on analogues are presented to support the suitability of such in situ measurements.  相似文献   
66.
67.
Estimation and assessment of Mars contamination.   总被引:1,自引:0,他引:1  
Since the beginning of the exploration of Mars, more than fourty years ago, thirty-six missions have been launched, including fifty-nine different space systems such as fly-by spacecraft, orbiters, cruise modules, landing or penetrating systems. Taking into account failures at launch, about three missions out of four have been successfully sent toward the Red Planet. The fact today is that Mars orbital environment includes orbiters and perhaps debris, and that its atmosphere and its surface include terrestrial compounds and dormant microorganisms. Coming from the UN Outer Space Treaty [United Nations Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies (the "Outer Space Treaty") referenced 610 UNTS 205 - resolution 2222(XXI) of December 1966] and according to the COSPAR planetary protection policy recommendations [COSPAR Planetary Protection Policy (20 October 2002), accepted by the Council and Bureau, as moved for adoption by SC F and PPP, prepared by the COSPAR/IAU Workshop on Planetary Protection, 4/02 with updates 10/0, 2002], Mars environment has to be preserved so as not to jeopardize the scientific investigations, and the level of terrestrial material brought on and around Mars theoretically has to comply with this policy. It is useful to evaluate what and how many materials, compounds and microorganisms are on Mars, to list what is in orbit and to identify where all these items are. Considering assumptions about materials, spores and gas location and dispersion on Mars, average contamination levels can be estimated. It is clear now that as long as missions are sent to other extraterrestrial bodies, it is not possible to keep them perfectly clean. Mars is one of the most concerned body, and the large number of missions achieved, on-going and planned now raise the question about its possible contamination, not necessarily from a biological point of view, but with respect to all types of contamination. Answering this question, will help to assess the potential effects of such contamination on scientific results and will address concerns relative to any ethical considerations about the contamination of other planets.  相似文献   
68.
In the search for aqueous habitats on Mars direct proof of (ancient) flowing water is still lacking, although remote sensing has provided indications of young fluvial systems. To demonstrate that such proof can be given, we examined surface marks on recent terrestrial sand grains by atomic force microscopy (AFM) and applied a quantitative three-dimensional analysis that can numerically distinguish between aeolian and aquatic transport mechanisms in sedimentary deposits on Earth. The surfaces of natural quartz grains as well as olivine, feldspar pyroxene, and monazite sands of known origin were imaged, each image yielding a three-dimensional map of the mineral surface. A fully automated analysis of distribution patterns of the structural elements that constitute the grain surfaces shows that wind-transported quartz grains have short linear elements irregularly distributed on the surface. Linear elements on water-transported grains, however, are longer with orientations that reflect the mineral symmetry. Because the surface patterns found on aqueous grains are due to preferential etching, they can be used as diagnostic fingerprints for the existence of past or present aqueous transport systems. We used a cluster analysis of the cross-correlation distance of distribution patterns in the structures of aeolian and aquatic sand grains to build a phenogram that provides a map for the relationship of the various sediments found on earth. The analysis shows that the method is highly significant and that water and wind transport can clearly be differentiated. In particular, feldspar and olivine sands contributed even more to the discrimination than quartz grains, which indicated that the method is promising for its application on future missions to Mars. Assuming that martian aqueous sand grains exhibit similar erosional patterns to mineral grains on Earth, simple AFM experiments on a Mars lander would be capable of proving the activity of flowing water in modern runoff systems and of analyzing the paleoenvironments of Mars.  相似文献   
69.
It is the purpose of this review to summarize and discuss recent research done in the field of particle propagation in the heliosphere. Several lines of approach have been followed to treat this problem. As a starting point the different forms of the transport equation are discussed. Quasi-Linear Theory (QLT) relates the power contained in fluctuations of the Interplanetary Magnetic Field (IMF) to the transport coefficients of energetic particles, an outline of the basic results of this theory is presented followed by a discussion of subsequent corrections made to the original formulation with an emphasis in recent developments where the effects of wave polarization, its propagation respect to the solar wind and the dissipation of power at large frequencies have been taken into account. The numerical approach using test particle trajectory integrations to obtain transport coefficients based on in situ satellite measureents is also discussed. It is well known that the determination of the particles mean free path for solar particle events by alternative methods leads to conflicting results, corrections made to original QLT are attempts to bridge the gap. Determination of the transport parameters from different lines of approach in a comparative basis have been done recently by calculating power spectra of IMF measured at the time solar particles were detected on the same spaceprobe, and performing numerical simulations with equivalent IMF data. Some of the results of such studies point to the solution of the conflicting determinations of the mean free path which has existed for nearly 30 years. An assesment of the present situation in this respect is given. Numerical determinations of transport parameters in the outer heliosphere are also reviewed and its consequences for solar modulation of galactic cosmic rays discussed. Space Science Reviews 62: Printed in Belgium.  相似文献   
70.
Mars surface in-situ exploration started in 1975 with the American VIKING mission. Two probes landed on the northern hemisphere and provided, for the first time, detailed information on the martian terrain, atmosphere and meteorology. The current goal is to undertake larger surface investigations and many projects are being planned by the major Space Agencies with this objective. Among these projects, the Mars 94/96 mission will make a major contributor toward generating significant information about the martian surface on a large scale. Since the beginning of the Solar System exploration, planets where life could exist have been subject to planetary protection requirements. Those requirements accord with the COSPAR Policy and have two main goals: the protection of the planetary environment from influence or contamination by terrestrial microorganisms, the protection of life science, and particularly of life detection experiments searching extra-terrestrial life, and not life carried by probes and spacecrafts. As the conditions for life and survival for terrestrial microorganisms in the Mars environment became known, COSPAR recommendations were updated. This paper will describe the decontamination requirements which will be applied for the MARS 94/96 mission, the techniques and the procedures which are and will be used to realize and control the decontamination of probes and spacecrafts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号