首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   0篇
航空   44篇
航天技术   2篇
航天   18篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   6篇
  2011年   7篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2001年   6篇
  1999年   2篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1985年   1篇
  1978年   1篇
排序方式: 共有64条查询结果,搜索用时 0 毫秒
51.
The study of planetary rings, like the rings themselves, is dynamic and evolving. Despite the flood of new information on morphology and optical properties, we have very little direct evidence about what rings are, how they formed, and how they behave. Answers to such questions can only been obtained by building theoretical models and comparing their implications with past and future observations. A number of dynamical problems are briefly presented here, namely the physics of the particle collisions, the role of the resonances, the disc-satellite interactions, and the timescale of evolution. A short list of outstanding problems concludes this short review.  相似文献   
52.
    
The large-scale kinetic technique has been used in the last decade to address many of the intriguing features of the magnetotail revealed by spacecraft observations of the region. In this paper, we present a brief overview of the results achieved by using this technique and present our most recent effort, a time-dependent, self-consistent model of the magnetotail in which the ion current is used to update the ambient magnetic field. This model indicates that the magnetotail exhibits intrinsic variability in the absence of external stimuli and reproduces many of the observed features of the magnetotail, including periodic ion precipitation profiles. Enhancements of this model promise to reveal more of the intricacies of the magnetotail when applied to studying the branching and percolation of the cross-tail current and to the influence of electron and ion behavior on macroscopic processes before and during substorms.  相似文献   
53.
    
The multi-user facility EXPOSE-E was designed by the European Space Agency to enable astrobiology research in space (low-Earth orbit). On 7 February 2008, EXPOSE-E was carried to the International Space Station (ISS) on the European Technology Exposure Facility (EuTEF) platform in the cargo bay of Space Shuttle STS-122 Atlantis. The facility was installed at the starboard cone of the Columbus module by extravehicular activity, where it remained in space for 1.5 years. EXPOSE-E was returned to Earth with STS-128 Discovery on 12 September 2009 for subsequent sample analysis. EXPOSE-E provided accommodation in three exposure trays for a variety of astrobiological test samples that were exposed to selected space conditions: either to space vacuum, solar electromagnetic radiation at >110?nm and cosmic radiation (trays 1 and 3) or to simulated martian surface conditions (tray 2). Data on UV radiation, cosmic radiation, and temperature were measured every 10?s and downlinked by telemetry. A parallel mission ground reference (MGR) experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions. EXPOSE-E performed a successful 1.5-year mission in space.  相似文献   
54.
In this work, we evaluate the exploration of the Solar system by ad hoc wireless sensor networks (WSN), i.e., networks where all nodes (either moving or stationary) can both provide and relay data. The two aspects of self-organization and localization are the major challenges to achieve a reliable network for a variety of missions. We point out the diversity of environmental and operational constrains that WSN used for space exploration would face.We evaluate two groups of scenarios consisting in static or moving sensing nodes that can be either located on the ground or in the atmosphere of a Solar-system object. These scenarios enable collecting data simultaneously over a large surface or volume.We consider physical and chemical sensing of the atmosphere, surface and soil using such networks. Emerging technologies such as nodes localization techniques are reviewed. Finally, we compare the specific requirements of WSN for space exploration with those of WSN designed for terrestrial applications.  相似文献   
55.
56.
The subject of this paper is stochastic acceleration by plasma turbulence, a process akin to the original model proposed by Fermi. We review the relative merits of different acceleration models, in particular the so called first order Fermi acceleration by shocks and second order Fermi by stochastic processes, and point out that plasma waves or turbulence play an important role in all mechanisms of acceleration. Thus, stochastic acceleration by turbulence is active in most situations. We also show that it is the most efficient mechanism of acceleration of relatively cool non relativistic thermal background magnetized plasma particles. In addition, it can preferentially accelerate electrons relative to protons as is needed in many astrophysical radiating sources, where usually there are no indications of presence of shocks. We also point out that a hybrid acceleration mechanism consisting of initial acceleration by turbulence of background particles followed by a second stage acceleration by a shock has many attractive features. It is demonstrated that the above scenarios can account for many signatures of the accelerated electrons, protons and other ions, in particular 3He and 4He, seen directly as Solar Energetic Particles and through the radiation they produce in solar flares.  相似文献   
57.
The Atacama Desert has long been considered a good Mars analogue for testing instrumentation for planetary exploration, but very few data (if any) have been reported about the geomicrobiology of its salt-rich subsurface. We performed a Mars analogue drilling campaign next to the Salar Grande (Atacama, Chile) in July 2009, and several cores and powder samples from up to 5?m deep were analyzed in situ with LDChip300 (a Life Detector Chip containing 300 antibodies). Here, we show the discovery of a hypersaline subsurface microbial habitat associated with halite-, nitrate-, and perchlorate-containing salts at 2?m deep. LDChip300 detected bacteria, archaea, and other biological material (DNA, exopolysaccharides, some peptides) from the analysis of less than 0.5?g of ground core sample. The results were supported by oligonucleotide microarray hybridization in the field and finally confirmed by molecular phylogenetic analysis and direct visualization of microbial cells bound to halite crystals in the laboratory. Geochemical analyses revealed a habitat with abundant hygroscopic salts like halite (up to 260?g kg(-1)) and perchlorate (41.13?μg g(-1) maximum), which allow deliquescence events at low relative humidity. Thin liquid water films would permit microbes to proliferate by using detected organic acids like acetate (19.14?μg g(-1)) or formate (76.06?μg g(-1)) as electron donors, and sulfate (15875?μg g(-1)), nitrate (13490?μg g(-1)), or perchlorate as acceptors. Our results correlate with the discovery of similar hygroscopic salts and possible deliquescence processes on Mars, and open new search strategies for subsurface martian biota. The performance demonstrated by our LDChip300 validates this technology for planetary exploration, particularly for the search for life on Mars.  相似文献   
58.
    
Brack A 《Astrobiology》2005,5(5):576-578
  相似文献   
59.
In this paper we review the possible radiation mechanisms for the observed non-thermal emission in clusters of galaxies, with a primary focus on the radio and hard X-ray emission. We show that the difficulty with the non-thermal, non-relativistic Bremsstrahlung model for the hard X-ray emission, first pointed out by Petrosian (Astrophys. J. 557, 560, 2001) using a cold target approximation, is somewhat alleviated when one treats the problem more exactly by including the fact that the background plasma particle energies are on average a factor of 10 below the energy of the non-thermal particles. This increases the lifetime of the non-thermal particles, and as a result decreases the extreme energy requirement, but at most by a factor of three. We then review the synchrotron and so-called inverse Compton emission by relativistic electrons, which when compared with observations can constrain the value of the magnetic field and energy of relativistic electrons. This model requires a low value of the magnetic field which is far from the equipartition value. We briefly review the possibilities of gamma-ray emission and prospects for GLAST observations. We also present a toy model of the non-thermal electron spectra that are produced by the acceleration mechanisms discussed in an accompanying paper Petrosian and Bykov (Space Sci. Rev., 2008, this issue, Chap. 11).  相似文献   
60.
It is the purpose of this review to summarize and discuss recent research done in the field of particle propagation in the heliosphere. Several lines of approach have been followed to treat this problem. As a starting point the different forms of the transport equation are discussed. Quasi-Linear Theory (QLT) relates the power contained in fluctuations of the Interplanetary Magnetic Field (IMF) to the transport coefficients of energetic particles, an outline of the basic results of this theory is presented followed by a discussion of subsequent corrections made to the original formulation with an emphasis in recent developments where the effects of wave polarization, its propagation respect to the solar wind and the dissipation of power at large frequencies have been taken into account. The numerical approach using test particle trajectory integrations to obtain transport coefficients based on in situ satellite measureents is also discussed. It is well known that the determination of the particles mean free path for solar particle events by alternative methods leads to conflicting results, corrections made to original QLT are attempts to bridge the gap. Determination of the transport parameters from different lines of approach in a comparative basis have been done recently by calculating power spectra of IMF measured at the time solar particles were detected on the same spaceprobe, and performing numerical simulations with equivalent IMF data. Some of the results of such studies point to the solution of the conflicting determinations of the mean free path which has existed for nearly 30 years. An assesment of the present situation in this respect is given. Numerical determinations of transport parameters in the outer heliosphere are also reviewed and its consequences for solar modulation of galactic cosmic rays discussed. Space Science Reviews 62: Printed in Belgium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号