首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   0篇
  国内免费   2篇
航空   20篇
航天技术   24篇
综合类   1篇
航天   21篇
  2022年   1篇
  2021年   6篇
  2020年   1篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2014年   10篇
  2013年   7篇
  2012年   7篇
  2011年   3篇
  2010年   4篇
  2008年   1篇
  2007年   7篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  1996年   1篇
  1995年   1篇
  1987年   1篇
排序方式: 共有66条查询结果,搜索用时 46 毫秒
31.
The geomagnetic field, modified by the solar wind, determines the shape, area and location of polar caps and auroral zones, among other magnetosphere and upper atmosphere characteristics. Since the field varies greatly with time it is of interest to analyze polar caps and auroral zones variations linked to magnetic field variations of intensity and pattern. Polar caps and auroral zones locations and areas for various single harmonic axial field configurations are obtained analytically assuming a simple magnetopause model. As the axial degree n increases, the polar caps and auroral zones total number, given by n + 1 and 2n respectively, also increase. However, their total areas decrease from a larger value in the case of an axial dipole to a minimum for an axial octupole (n = 3), and then increase for increasing degrees. The increasing rate is much higher in the auroral zones case to the point that it exceeds the dipolar value at n = 5 while in the polar caps case this occurs at n = 8. The absolute latitudes of the auroral zones and polar caps that reside around the geographical poles increase with axial degree. Our results represent an end-member case of the evolution of auroral zones and polar caps during polarity reversals if the transition involves axial dipole energy cascade to higher axial degrees. Evidence for such an energy transfer is found in the historical record of the geomagnetic secular variation.  相似文献   
32.
Source length scales are estimated for the September 14, 2005 solar noise storm from the spectral and temporal observed characteristics of the background continuum fluctuations and clusters of Type I bursts. The characteristic height of the magnetic structure where the noise storm source is located and the size of the source where Type I bursts clustering takes place were calculated. A lower limit for the height of the magnetic structure supporting the noise storm at 237 MHz was estimated too.  相似文献   
33.
The Gravity Recovery and Interior Laboratory (GRAIL) is a spacecraft-to-spacecraft tracking mission that was developed to map the structure of the lunar interior by producing a detailed map of the gravity field. The resulting model of the interior will be used to address outstanding questions regarding the Moon’s thermal evolution, and will be applicable more generally to the evolution of all terrestrial planets. Each GRAIL orbiter contains a Lunar Gravity Ranging System instrument that conducts dual-one-way ranging measurements to measure precisely the relative motion between them, which in turn are used to develop the lunar gravity field map. Each orbiter also carries an Education/Public Outreach payload, Moon Knowledge Acquired by Middle-School Students (MoonKAM), in which middle school students target images of the Moon for subsequent classroom analysis. Subsequent to a successful launch on September 10, 2011, the twin GRAIL orbiters embarked on independent trajectories on a 3.5-month-long cruise to the Moon via the EL-1 Lagrange point. The spacecraft were inserted into polar orbits on December 31, 2011 and January 1, 2012. After a succession of 19 maneuvers the two orbiters settled into precision formation to begin science operations in March 1, 2012 with an average altitude of 55 km. The Primary Mission, which consisted of three 27.3-day mapping cycles, was successfully completed in June 2012. The extended mission will permit a second three-month mapping phase at an average altitude of 23 km. This paper provides an overview of the mission: science objectives and measurements, spacecraft and instruments, mission development and design, and data flow and data products.  相似文献   
34.
35.
In this paper we present recent additions to the visualization toolset offered by the Community Coordinated Modeling Center (CCMC). Two suites of visualization tools are available that can address different needs during the analysis of model simulations of the magnetosphere that are provided by the CCMC. The online, server-side visualization allows the user to quickly browse through simulation runs and now can create maps of magnetic field line topology in the magnetosphere. The second tool, SWX, can be used on the client computer after data have been downloaded. With this second tool the user can interact directly with the three-dimensional objects that are being rendered. We present results from a simulation of a Flux Transfer Event that was performed at the CCMC using a magnetohydrodynamic model of the Earth’s magnetosphere with a high resolution grid focused on the dayside magnetosheath and dayside magnetopause. The simulation shows that the FTE that results from localized magnetic reconnection is a complicated three-dimensional structure that requires modern visualization techniques. Visualization techniques that are presented here allow the researcher to fully appreciate the complexity contained in magnetospheric simulation results.  相似文献   
36.
37.
In recent years, Kalman filtering has emerged as a suitable technique to determine terrestrial reference frames (TRFs), a prime example being JTRF2014. The time series approach allows variations of station coordinates that are neither reduced by observational corrections nor considered in the functional model to be taken into account. These variations are primarily due to non-tidal geophysical loading effects that are not reduced according to the current IERS Conventions (2010). It is standard practice that the process noise models applied in Kalman filter TRF solutions are derived from time series of loading displacements and account for station dependent differences. So far, it has been assumed that the parameters of these process noise models are constant over time. However, due to the presence of seasonal and irregular variations, this assumption does not truly reflect reality. In this study, we derive a station coordinate process noise model allowing for such temporal variations. This process noise model and one that is a parameterized version of the former are applied in the computation of TRF solutions based on very long baseline interferometry data. In comparison with a solution based on a constant process noise model, we find that the station coordinates are affected at the millimeter level.  相似文献   
38.
Space Science Reviews - The concentration and distribution of water in the Earth has influenced its evolution throughout its history. Even at the trace levels contained in the planet’s deep...  相似文献   
39.
The Imaging and Slitless Spectroscopy Instrument (ISSIS) will be flown as part of the science instrumentation in the World Space Observatory-Ultraviolet (WSO-UV). ISSIS will be the first UV imager to operate in a high Earth orbit from a 2 m class space telescope. In this contribution, the science driving the ISSIS design and the main characteristics of this instrument are presented.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号