首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   0篇
  国内免费   2篇
航空   20篇
航天技术   24篇
综合类   1篇
航天   21篇
  2022年   1篇
  2021年   6篇
  2020年   1篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2014年   10篇
  2013年   7篇
  2012年   7篇
  2011年   3篇
  2010年   4篇
  2008年   1篇
  2007年   7篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  1996年   1篇
  1995年   1篇
  1987年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
21.
Abstract The Cuatro Ciénegas Basin (CCB) is a rare oasis in the Chihuahuan Desert in the state of Coahuila, Mexico. It has a biological endemism similar to that of the Galapagos Islands, and its spring-fed ecosystems have very low nutrient content (nitrogen or phosphorous) and are dominated by diverse microbialites. Thus, it has proven to be a distinctive opportunity for the field of astrobiology, as the CCB can be seen as a proxy for an earlier time in Earth's history, in particular the late Precambrian, the biological frontier when prokaryotic life yielded at least partial dominance to eukaryotes and multicellular life. It is a kind of ecological time machine that provides abundant opportunities for collaborative investigations by geochemists, geologists, ecologists, and population biologists in the study of the evolutionary processes that structured Earth-based life, especially in the microbial realm. The CCB is an object of investigation for the identification of biosignatures of past and present biota that can be used in our search for extraterrestrial life. In this review, we summarize CCB research efforts that began with microbial ecology and population biology projects and have since been expanded into broader efforts that involve biogeochemistry, comparative genomics, and assessments of biosignatures. We also propose that, in the future, the CCB is sanctioned as a "Precambrian Park" for astrobiology. Key Words: Microbial mats-Stromatolites-Early Earth-Extremophilic microorganisms-Microbial ecology. Astrobiology 12, 641-647.  相似文献   
22.
The quasi-biennial oscillation, QBO, a well known periodicity in the equatorial stratospheric zonal winds, is also found in ionospheric parameters and in solar and geomagnetic activity indices. Many authors speculated about the link between the QBO in solar and geomagnetic activity and the QBO in atmospheric parameters. In this work we analyze the presence of the QBO in the ionosphere using the Vertical Total Electron Content (VTEC) values obtained from Global Navigation Satellite System (GNSS) measurements during the period 1999–2012. In particular, we used IONEX files, i.e. the International GNSS Service (IGS) ionospheric products. IONEX provide VTEC values around the world at 2-h intervals. From these data we compute global and zonal averages of VTEC at different local times at mid and equatorial geomagnetic latitudes. VTEC and Extreme Ultra Violet (EUV) solar flux time series are analyzed using a wavelet multi resolution analysis. In all cases the QBO is detected among other expected periodicities.  相似文献   
23.
Crossings of the magnetopause near the subsolar point are analyzed using data of THEMIS mission. Variations of the magnetic field near magnetopause measured by one of THEMIS satellites are studied and compared with simultaneous measurements in the solar wind by another THEMIS satellite. The time delay of the solar wind arrival at the subsolar point of the magnetopause is taken into account. 30 and 90 s averaging of the magnetic field in the magnetosheath is produced. The results of averaging are compared with the results of measurements in the solar wind before the bow shock and foreshock. It is shown, that BxBx component of the magnetic field near magnetopause is near to zero, which supports the possibility to consider the magnetopause as the tangential discontinuity. Comparatively good correlation of ByBy component in the solar wind and near the magnetopause is observed. The correlation of BzBz component near the magnetopause and IMF is practically absent, the sign of the BzBz near the subsolar point does not coincide with the sign of IMF BzBz in ∼30% cases.  相似文献   
24.
The Atacama Large Millimeter-Submillimeter Array (ALMA) has opened a new window for studying the Sun via high-resolution high-sensitivity imaging at millimeter wavelengths. In this contribution I review the capabilities of the instrument for solar observing and describe the extensive effort taken to bring the possibility of solar observing with ALMA to the scientific community. The first solar ALMA observations were carried out during 2014 and 2015 in two ALMA bands, Band 3 (λ=3?mm) and Band 6 (λ=1.3?mm), in single-dish and interferometric modes, using single pointing and mosaicing observing techniques, with spatial resolution up to 2″ and 1″ in the two bands, respectively. I overview several recently published studies which made use of the first solar ALMA observations, describe current status of solar observing with ALMA and briefly discuss the future capabilities of the instrument.  相似文献   
25.
In light of the rapidly growing New Space Economy, the landscape of space exploration and development activities will certainly become much more complicated year by year. Relevant commercial space actors have already emerged, pushing the boundaries of entrepreneurial space ventures beyond the Earth-oriented upstream and downstream market segments and opening up the path towards the novel segments of space exploration, space resources utilization, and space research. Planetary protection is usually defined as a set of guidelines concerning the avoidance of bidirectional biological material exchange between the Earth and other celestial bodies. Recent success stories of established and new-entrant NewSpace actors, although posing no realistic planetary protection threat at present, clearly indicate that serious work needs to be done in order for the relevant guidelines to keep up with the rapid advances of the technology development cycles that occur within NewSpace companies. This need may become even more urgent, as space entrepreneurs acquire and develop the resources and competencies to target the currently underserved market segments of space research, exploration, and utilization. As of now, these capabilities were maintained solely by public space agencies; thus, all planetary protection priorities, strategies, and responsibilities were discussed, agreed-upon, and delegated for implementation among national and international working groups of public stakeholders. Although top-down regulations can be effective in controlling the quality and conformity of the deliverables of private subcontractors to public contractors, international planetary protection frameworks might need to evolve even beyond such unmet public-private interaction and partnership models. For this reason, this study did not focus on the legal and political issues of mandating NewSpace actors to adhere to planetary protection guidelines; rather, drawing from the field of sustainable development on Earth, an environmental economics approach was followed, with the goal of viewing the relationship between planetary protection and private space exploration and development as another “tragedy of the commons” problem that must be settled accordingly. After the problem’s framing, i.e. the conceptual presentation and synthesis of four extraterrestrial non-excludable goods, the initial approach of their total economic value, and the negative externalities of their exploitation, a discussion of the forward contamination mitigation costs was conducted. Drawing from the literature and using examples from both the terrestrial and aerospace sectors, a pre-emptive move was suggested: the establishment of a global industry consortium for the pre-competitive collaboration in forward contamination mitigation technologies, centered on an international planetary protection analogue program and its respective testbed facility.  相似文献   
26.
Space Science Reviews - Correction to: Space Sci Rev DOI This article has been corrected. Figure 3 was initially published with erroneous axis titles in Fig. 3B and 3D where the $x$ axis should be...  相似文献   
27.
28.
Lunar Reconnaissance Orbiter Overview: The Instrument Suite and Mission   总被引:6,自引:0,他引:6  
NASA’s Lunar Precursor Robotic Program (LPRP), formulated in response to the President’s Vision for Space Exploration, will execute a series of robotic missions that will pave the way for eventual permanent human presence on the Moon. The Lunar Reconnaissance Orbiter (LRO) is first in this series of LPRP missions, and plans to launch in October of 2008 for at least one year of operation. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search for possible polar surface ice in shadowed regions, Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well as wide-angle images to characterize polar illumination conditions and to identify potential resources, Lunar Exploration Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and will provide space radiation environment measurements that may be useful for future human exploration, Diviner Lunar Radiometer Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution to identify cold-traps and potential ice deposits, Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently shadowed regions illuminated only by starlight. Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which will investigate the effect of galactic cosmic rays on tissue-equivalent plastics as a constraint on models of biological response to background space radiation. The technology demonstration is an advanced radar (mini-RF) that will demonstrate X- and S-band radar imaging and interferometry using light weight synthetic aperture radar. This paper will give an introduction to each of these instruments and an overview of their objectives.  相似文献   
29.
30.
The Jovian InfraRed Auroral Mapper (JIRAM) has been accepted by NASA for inclusion in the New Frontiers mission "Juno," which will launch in August 2011. JIRAM will explore the dynamics and the chemistry of Jupiter's auroral regions by high-contrast imaging and spectroscopy. It will also analyze jovian hot spots to determine their vertical structure and infer possible mechanisms for their formation. JIRAM will sound the jovian meteorological layer to map moist convection and determine water abundance and other constituents at depths that correspond to several bars pressure. JIRAM is equipped with a single telescope that accommodates both an infrared camera and a spectrometer to facilitate a large observational flexibility in obtaining simultaneous images in the L and M bands with the spectral radiance over the central zone of the images. Moreover, JIRAM will be able to perform spectral imaging of the planet in the 2.0-5.0 microm interval of wavelengths with a spectral resolution better than 10 nm. Instrument design, modes, and observation strategy will be optimized for operations onboard a spinning satellite in polar orbit around Jupiter. The JIRAM heritage comes from Italian-made, visual-infrared imaging spectrometers dedicated to planetary exploration, such as VIMS-V on Cassini, VIRTIS on Rosetta and Venus Express, and VIR-MS on the Dawn mission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号