全文获取类型
收费全文 | 143篇 |
免费 | 2篇 |
专业分类
航空 | 51篇 |
航天技术 | 65篇 |
综合类 | 1篇 |
航天 | 28篇 |
出版年
2021年 | 4篇 |
2020年 | 1篇 |
2019年 | 1篇 |
2018年 | 6篇 |
2017年 | 3篇 |
2016年 | 6篇 |
2015年 | 1篇 |
2014年 | 10篇 |
2013年 | 8篇 |
2012年 | 7篇 |
2011年 | 15篇 |
2010年 | 9篇 |
2009年 | 9篇 |
2008年 | 10篇 |
2007年 | 6篇 |
2006年 | 9篇 |
2005年 | 2篇 |
2004年 | 4篇 |
2003年 | 5篇 |
2002年 | 1篇 |
2001年 | 3篇 |
2000年 | 2篇 |
1996年 | 2篇 |
1993年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1984年 | 4篇 |
1983年 | 3篇 |
1982年 | 2篇 |
1981年 | 4篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1970年 | 1篇 |
1968年 | 2篇 |
排序方式: 共有145条查询结果,搜索用时 15 毫秒
11.
Alexander Ollongren 《Acta Astronautica》2011,68(3-4):544-548
In a sequence of papers on the topic of message construction for interstellar communication by means of a cosmic language, the present author has discussed various significant requirements such a lingua should satisfy. The author’s Lingua Cosmica is a (meta) system for annotating contents of possibly large-scale messages for ETI. LINCOS, based on formal constructive logic, was primarily designed for dealing with logic contents of messages but is also applicable for denoting structural properties of more general abstractions embedded in such messages. The present paper explains ways and means for achieving this for a special case: recursive entities. As usual two stages are involved: first the domain of discourse is enriched with suitable representations of the entities concerned, after which properties over them can be dealt with within the system itself. As a representative example the case of Russian dolls (Matrjoshka’s) is discussed in some detail and relations with linguistic structures in natural languages are briefly exploited. 相似文献
12.
Measuring temperatures, mechanical loads and derived quantities precisely and reliably play an important role in spaceflight. With spacecraft becoming increasingly complex, upscaling of present telemetry techniques can become cumbersome. Additionally, there are entirely new sensory requirements, resulting from emerging technologies such as smart structures, active vibration damping and composite material health monitoring. It has been demonstrated in preceding studies that these measurements can be advantageously and efficiently carried out by means of fiber-optic systems. The most prominent fiber-optic strain and temperature sensor is the fiber Bragg grating. Typically, multiple fiber Bragg gratings are used to translate entire temperature and strain fields into an optical wavelength information. For the interrogation of these sensors, a broadband or scanning light source is required. Additional requirements with respect to the light source are high intensity and unpolarized illumination of the gratings. These constraints can be met by a light source that is based on amplified spontaneous emission in a rare-earth-doped fiber. In the presented work, a compact light source, adapted for measurement applications and targeted towards space applications, has been developed. The design of this light source is presented, as well as its implementation. The light source has been designed and tested for selected core aspects of space robustness and the results of these tests are summarized. 相似文献
13.
Removing orbital debris with lasers 总被引:2,自引:0,他引:2
Claude R. Phipps Kevin L. Baker Stephen B. Libby Duane A. Liedahl Scot S. Olivier Lyn D. Pleasance Alexander Rubenchik James E. Trebes E. Victor George Bogdan Marcovici James P. Reilly Michael T. Valley 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of LEO space is threatened by runaway collision cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1 cm demands serious attention. A promising proposed solution uses a high power pulsed laser system on the Earth to make plasma jets on the objects, slowing them slightly, and causing them to re-enter and burn up in the atmosphere. In this paper, we reassess this approach in light of recent advances in low-cost, light-weight modular design for large mirrors, calculations of laser-induced orbit changes and in design of repetitive, multi-kilojoules lasers, that build on inertial fusion research. These advances now suggest that laser orbital debris removal (LODR) is the most cost-effective way to mitigate the debris problem. No other solutions have been proposed that address the whole problem of large and small debris. A LODR system will have multiple uses beyond debris removal. International cooperation will be essential for building and operating such a system. 相似文献
14.
R. Schwenn J. C. Raymond D. Alexander A. Ciaravella N. Gopalswamy R. Howard H. Hudson P. Kaufmann A. Klassen D. Maia G. Munoz-Martinez M. Pick M. Reiner N. Srivastava D. Tripathi A. Vourlidas Y.-M. Wang J. Zhang 《Space Science Reviews》2006,123(1-3):127-176
CMEs have been observed for over 30 years with a wide variety of instruments. It is now possible to derive detailed and quantitative information on CME morphology, velocity, acceleration and mass. Flares associated with CMEs are observed in X-rays, and several different radio signatures are also seen. Optical and UV spectra of CMEs both on the disk and at the limb provide velocities along the line of sight and diagnostics for temperature, density and composition. From the vast quantity of data we attempt to synthesize the current state of knowledge of the properties of CMEs, along with some specific observed characteristics that illuminate the physical processes occurring during CME eruption. These include the common three-part structures of CMEs, which is generally attributed to compressed material at the leading edge, a low-density magnetic bubble and dense prominence gas. Signatures of shock waves are seen, but the location of these shocks relative to the other structures and the occurrence rate at the heights where Solar Energetic Particles are produced remains controversial. The relationships among CMEs, Moreton waves, EIT waves, and EUV dimming are also cloudy. The close connection between CMEs and flares suggests that magnetic reconnection plays an important role in CME eruption and evolution. We discuss the evidence for reconnection in current sheets from white-light, X-ray, radio and UV observations. Finally, we summarize the requirements for future instrumentation that might answer the outstanding questions and the opportunities that new space-based and ground-based observatories will provide in the future. 相似文献
15.
P. P. Pavlov R. S. Litvinenko M. N. Mubarakhin I. O. Yushin V. M. Nigmatullin 《Russian Aeronautics (Iz VUZ)》2008,51(2):198-204
A technique for selecting a rational variant of a multifunctional aircraft system using the analytic hierarchy process is proposed and a solution of a practical problem is presented. 相似文献
16.
Nikolai M. Gavrilov Andrey V. Koval Alexander I. Pogoreltsev Elena N. Savenkova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(7):1819-1836
Parameterization schemes of atmospheric normal modes (NMs) and orographic gravity waves (OGWs) have been implemented into the mechanistic Middle and Upper Atmosphere Model (MUAM) simulating atmospheric general circulation. Based on the 12-members ensemble of runs with the MUAM, a composite of the stratospheric warming (SW) has been constructed using the UK Met Office data as the lower boundary conditions. The simulation results show that OGW amplitudes increase at altitudes above 30 km in the Northern Hemisphere after the SW event. At altitudes of about 50 km, OGWs have largest amplitudes over North American and European mountain systems before and during the composite SW, and over Himalayas after the SW. Simulations demonstrate substantial (up to 50–70%) variations of amplitudes of stationary planetary waves (PWs) during and after the SW in the mesosphere-lower thermosphere of the Northern Hemisphere. Westward travelling NMs have amplitude maxima not only in the Northern, but also in the Southern Hemisphere, where these modes have waveguides in the middle and upper atmosphere. Simulated variations of PW and NM amplitudes correspond to changes in the mean zonal wind, EP-fluxes and wave refractive index at different phases of the composite SW events. Inclusion of the parameterization of OGW effects leads to decreases in amplitudes (up to 15%) of almost all SPWs before and after the SW event and their increase (up to 40–60%) after the SW in the stratosphere and mesosphere at middle and high northern latitudes. It is suggested that observed changes in NM amplitudes in the Southern Hemisphere during SW could be caused by divergence of increased southward EP-flux. This EP-flux increases due to OGW drag before SW and extends into the Southern Hemisphere. 相似文献
17.
Here we propose that the radioresistance (tolerance to ionizing radiation) observed in several terrestrial bacteria has a martian origin. Multiple inconsistencies with the current view of radioresistance as an accidental side effect of tolerance to desiccation are discussed. Experiments carried out 25 years ago were reproduced to demonstrate that "ordinary" bacteria can develop high radioresistance ability after multiple cycles of exposure to high radiation dosages followed by cycles of recovery of the bacterial population. We argue that "natural" cycles of this kind could have taken place only on the martian surface, and we hypothesize that Mars microorganisms could have developed radioresistance in just several million years' time and, subsequently, have undergone transfer to Earth by way of martian meteorites. Our mechanism implies multiple and frequent exchanges of biota between Mars and Earth. 相似文献
18.
P. Alexander M. Rossi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Zonal velocity and temperature daily global reanalysis data of 30 years are used to search seasonally steady planetary disturbances in the middle troposphere (400 hPa) and middle stratosphere (10 hPa). Significant wavenumber 1, 2 and 3 modes are found. Constant phase lines of zonal velocity 1 modes exhibit significant inclination angles with respect to the meridians. The winter hemisphere generally shows a more significant presence of structures. The Northern Hemisphere (NH) exhibits all over the year a larger amount of structures and more intense amplitudes than the Southern Hemisphere (SH). Middle latitudes exhibit the most significant cases and low latitudes the least significant ones. Longitudinally oriented land–sea transitions at ±65° and −35° latitudes appear to play a significant role for the presence of steady planetary modes. The stratosphere exhibits a much simpler picture than the troposphere. Large scale structures with respectively NE–SW (NH) and NW–SE (SH) tilts in the observed temperature and zonal velocity constant phase lines recall the quasi-stationary Rossby wave trains that favor the poleward transport of angular momentum. 相似文献
19.
Alexander G. Kosovichev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(6):830-837
Solar and stellar activity is a result of complex interaction between magnetic field, turbulent convection and differential rotation in a star’s interior. Magnetic field is believed to be generated by a dynamo process in the convection zone. It emerges on the surface forming sunspots and starspots. Localization of the magnetic spots and their evolution with the activity cycle is determined by large-scale interior flows. Thus, the internal dynamics of the Sun and other stars hold the key to understanding the dynamo mechanism and activity cycles. Recently, significant progress has been made for modeling magnetohydrodynamics of the stellar interiors and probing the internal rotation and large-scale dynamics of the Sun by helioseismology. Also, asteroseismology is beginning to probe interiors of distant stars. I review key achievements and challenges in our quest to understand the basic mechanisms of solar and stellar activity. 相似文献
20.
A.A Trotman A.M Almazan A.D Alexander P.A Loretan X Zhou J.Y Lu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(12):269
Many challenges are presented by biological degradation in a bioregenerative Controlled Ecological Life Support System as envisioned by the U.S. National Aeronautics and Space Administration. In studies conducted with biodegradative microorganisms indigenous to sweetpotato fields, it was determined that a particle size of 75 microns and incubation temperature of 30°C were optimal for degradation. The composition of the biomass and characterization of plant nutrient solution indicated the presence of potential energy sources to drive microbial transformations of plant waste. Selected indigenous soil isolates with ligno-cellulolytic or sulfate-reducing ability were utilized in biological studies and demonstrated diversity in their ability to reduce sulfate in solution and to utilize alternative carbon sources: a lignin analog 4-hydroxy, 3-methoxy cinnamic acid, cellulose, arabinose, glucose, sucrose, mannitol, galactose, ascorbic acid. 相似文献