首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6858篇
  免费   16篇
  国内免费   20篇
航空   3072篇
航天技术   2408篇
综合类   21篇
航天   1393篇
  2021年   75篇
  2019年   45篇
  2018年   160篇
  2017年   107篇
  2016年   112篇
  2015年   51篇
  2014年   178篇
  2013年   222篇
  2012年   212篇
  2011年   322篇
  2010年   229篇
  2009年   330篇
  2008年   366篇
  2007年   220篇
  2006年   156篇
  2005年   185篇
  2004年   182篇
  2003年   205篇
  2002年   145篇
  2001年   220篇
  2000年   127篇
  1999年   162篇
  1998年   190篇
  1997年   109篇
  1996年   171篇
  1995年   203篇
  1994年   189篇
  1993年   120篇
  1992年   149篇
  1991年   48篇
  1990年   48篇
  1989年   139篇
  1988年   59篇
  1987年   56篇
  1986年   63篇
  1985年   184篇
  1984年   145篇
  1983年   107篇
  1982年   115篇
  1981年   214篇
  1980年   49篇
  1979年   45篇
  1978年   50篇
  1977年   42篇
  1975年   50篇
  1974年   38篇
  1973年   32篇
  1972年   35篇
  1971年   35篇
  1970年   37篇
排序方式: 共有6894条查询结果,搜索用时 0 毫秒
671.
Online INS/GPS integration with a radial basis function neural network   总被引:1,自引:0,他引:1  
Most of the present navigation systems rely on Kalman filtering to fuse data from global positioning system (GPS) and the inertial navigation system (INS). In general, INS/GPS integration provides reliable navigation solutions by overcoming each of their shortcomings, including signal blockage for GPS and growth of position errors with time for INS. Present Kalman filtering INS/GPS integration techniques have some inadequacies related to the stochastic error models of inertial sensors, immunity to noise, and observability. This paper aims to introduce a multi-sensor system integration approach for fusing data from INS and GPS utilizing artificial neural networks (ANN). A multi-layer perceptron ANN has been recently suggested to fuse data from INS and differential GPS (DGPS). Although being able to improve the positioning accuracy, the complexity associated with both the architecture of multi-layer perceptron networks and its online training algorithms limit the real-time capabilities of this technique. This article, therefore, suggests the use of an alternative ANN architecture. This architecture is based on radial basis function (RBF) neural networks, which generally have simpler architecture and faster training procedures than multi-layer perceptron networks. The INS and GPS data are first processed using wavelet multi-resolution analysis (WRMA) before being applied to the RBF network. The WMRA is used to compare the INS and GPS position outputs at different resolution levels. The RBF-ANN module is then trained to predict the INS position errors and provide accurate positioning of the moving platform. Field-test results have demonstrated that substantial improvement in INS/GPS positioning accuracy could be obtained by applying the combined WRMA and RBF-ANN modules.  相似文献   
672.
Star identification can be accomplished by several different available algorithms that identify the stars observed by a star tracker. However, efficiency and reliability remain key issues and the availability of new active pixel cameras requires new approaches. Two novel algorithms for recursive mode star identification are presented here. The first approach is derived by the spherical polygon search (SP-search) algorithm, it was used to access all the cataloged stars observed by the sensor field-of-view (FOV) and recursively add/remove candidate cataloged stars according to the predicted image motion induced by camera attitude dynamics. Star identification is then accomplished by a star pattern matching technique which identifies the observed stars in the reference catalog. The second method uses star neighborhood information and a catalog neighborhood pointer matrix to access the star catalog. In the recursive star identification process, and under the assumption of "slow" attitude dynamics, only the stars in the neighborhood of previously identified stars are considered for star identification in the succeeding frames. Numerical tests are performed to validate the absolute and relative efficiency of the proposed methods.  相似文献   
673.
The current state of research involving manifestations of nonlinearity in geomagnetic pulsations is reviewed. Traditionally, the attention of researchers was focused on the effects of resonant interaction of geomagnetic pulsations with small groups of energetic particles, which actually means the study of the quasi-linear relaxation of radiation belt ions, the modulation of auroral electron fluxes, etc. The present review concentrates on the problem of the nonlinear effect influence of pulsations on the backgroud (cold) plasma and on the geomagnetic field. This kind of interaction results in a significant modification of the plasma distribution in the magnetosphere. Self-consistent wave structures—solitons and vortices may occur as well. Such nonlinear effects contribute to physics of geomagnetic pulsations and are also of fundamental importance for general physics. Another set of more narrow problems considered in the review, is related to phenomenological modeling of fluctuational and critical phenomena in the magnetosphere. The essence of our approach is to present the magnetosphere as a black box, whose properties should be determined by the statistical characteristics of its output signals. This approach to phenomenology can be a useful supplement to the methods of microscopic modeling aimed at detecting nonlinear manifestations of geomagnetic pulsations.  相似文献   
674.
Theoretical pressure balance arguments have implied that steady convection is hardly possible in the terrestrial magnetotail and that steady energy input necessarily generates a cyclic loading-unloading sequence, i.e., repetitive substorms. However, observations have revealed that enhanced solar wind energy input to the magnetospheric system may either lead to substorm activity or enhanced but steady convection. This topic is reviewed with emphasis on several recent case studies of the Steady Magnetospheric Convection (SMC) events. In these cases extensive data sets from both satellite and ground-based instruments from various magnetospheric and ionospheric regions were available.Accurate distinction of the spatial and temporal scales of the magnetospheric processes is vital for correct interpretation of the observations during SMC periods. We show that on the large scale, the magnetospheric configuration and plasma convection are stable during SMC events, but that both reveal considerable differences from their quiet-time assemblies. On a shorter time scale, there are numerous transient activations which are similar to those found during substorms, but which presumably originate from a more distant tail reconnection process, and map to the poleward boundary of the auroral oval. The available observations and the unresolved questions are summarized here.The tail magnetic field during SMC events resembles both substorm growth and recovery phases in the neartail and midtail, respectively, but this configuration may remain stable for up to ten hours. Based on observations and model results we discuss how the magnetospheric system avoids pressure balance problems when the plasma convects earthward.Finally, the importance of further coordinated studies of SMC events is emphasized. Such studies may shed more light on the substorm dynamics and help to verify quantitatively the theoretical models of the convecting magnetosphere.  相似文献   
675.
The Lightning and Radio Emission Detector (LRD) instrument will be carried by the Galileo Probe into Jupiter's atmosphere. The LRD will verify the existence of lightning in the atmosphere and will determine the details of many of its basic characteristics. The instrument, operated in its magnetospheric mode at distances of about 5, 4, 3, and 2 planetary radii from Jupiter's center, will also measure the radio frequency (RF) noise spectrum in Jupiter's magnetosphere. The LRD instrument is composed of a ferritecore radio frequency antenna ( 100 Hz to 100 kHz) and two photodiodes mounted behind individual fisheye lenses. The output of the RF antenna is analyzed both separately and in coincidence with the optical signals from the photodiodes. The RF antenna provides data both in the frequency domain (with three narrow-band channels, primarily for deducing the physical properties of distant lightning) and in the time domain with a priority scheme (primarily for determining from individual RF waveforms the physical properties of closeby-lightning).  相似文献   
676.
The monthly hourly medians of maximum electron density, NmF2, at two Pakistani ionospheric stations, Karachi and Islamabad, have been determined for solar minimum (1996) and solar maximum (2000) and compared with IRI predictions using the URSI coefficients. At night and pre-noon period the NmF2 values at both stations are almost equal during the 2 years. However, at post-noon the values at Karachi are considerably larger than those at Islamabad due to the equatorial or geomagnetic anomaly. Karachi (geomag. coord. 16.44°N, 139.08°E) lies near the region of the equatorial anomaly (+20 and −20 geomagnetic latitude), so most of the NmF2 values at Karachi are larger than those at Islamabad (geomag. coord. 24.46°N, 145.67°E). The maximum monthly values of NmF2 show a semi-annual variation at Karachi and Islamabad both during 1996 and 2000 as predicted by IRI.  相似文献   
677.
Beyond the magnetic influence of the Earth, the flux of galactic cosmic radiation (GCR) represents a radiological concern for long-term manned space missions. Current concepts of radiation quality and equivalent dose are inadequate for accurately specifying the relative biological "efficiency" of low doses of such heavily ionising radiations, based as they are on the single parameter of Linear Energy Transfer (LET). Such methods take no account of the mechanisms, nor of the highly inhomogeneous spatial structure, of energy deposition in radiation tracks. DNA damage in the cell nucleus, which ultimately leads to the death or transformation of the cell, is usually initiated by electrons liberated from surrounding molecules by the incident projectile ion. The characteristics of these emitted "delta-rays", dependent primarily upon the charge and velocity of the ion, are considered in relation to an idealised representation of the cellular environment. Theoretically calculated delta-ray energy spectra are multiplied by a series of weighting algorithms designed to represent the potential for DNA insult in this environment, both in terms of the quantity and quality of damage. By evaluating the resulting curves, and taking into account the energy spectra of heavy ions in space, a relative measure of the biological relevance of the most abundant GCR species is obtained, behind several shielding configurations. It is hoped that this method of assessing the radiation quality of galactic cosmic rays will be of value when considering the safety of long-term manned space missions.  相似文献   
678.
Results of the 2.5–5 micron spectroscopic channel of the IKS instrument on Vega are reported and the data reduction process is described. H2O and CO2 molecules have been detected with production rates of 1030 s−1 and 1.5 1028 s−1 respectively. Emission features between 3.3 and 3.7 microns are tentatively attributed to CH - bearing compounds - CO is marginally detected with a mixing ratio CO/H2O 0.2. OH emission and H2O - ice absorption might also be present in the spectra.  相似文献   
679.
The SilEye experiment aims to study the cause and processes related to the anomalous Light Flashes (LF) perceived by astronauts in orbit and their relation with Cosmic Rays. These observations will be also useful in the study of the long duration manned space flight environment. Two PC-driven silicon detector telescopes have been built and placed aboard Space Station MIR. SilEye-1 was launched in 1995 and provided particles track and LF information; the data gathered indicate a linear dependence of FLF(Hz) ( 4 2) 10(3) 5.3 1.7 10(4) Fpart(Hz) if South Atlantic Anomaly fluxes are not included. Even though higher statistic is required, this is an indication that heavy ion interactions with the eye are the main LF cause. To improve quality and quantity of measurements, a second apparatus, SilEye-2, was placed on MIR in 1997, and started work from August 1998. This instrument provides energetic information, which allows nuclear identification in selected energy ranges; we present preliminary measurements of the radiation field inside MIR performed with SilEye-2 detector in June 1998.  相似文献   
680.
From an investigation of the activity of six glucocorticoid dependent liver enzymes, the existence of chronic, transient, stress-induced hypercorticosteronaemia during flight is probable. This hypercorticosteronaemia arises from weightlessness and induces gluconeogenesis. Weightlessness also caused substantial increases in liver glycogen level. The increased lipolytic activity and that of lipoprotein lipase in several groups of animals could be interpreted as enhancement of fat mobilization and utilization under the influence of stress. As this latter enhancement was also found in ground-based controls, it may have been due to the stress of handling rather than to space flight per se.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号