全文获取类型
收费全文 | 6847篇 |
免费 | 31篇 |
国内免费 | 14篇 |
专业分类
航空 | 3072篇 |
航天技术 | 2406篇 |
综合类 | 21篇 |
航天 | 1393篇 |
出版年
2021年 | 74篇 |
2019年 | 45篇 |
2018年 | 160篇 |
2017年 | 107篇 |
2016年 | 112篇 |
2015年 | 51篇 |
2014年 | 178篇 |
2013年 | 222篇 |
2012年 | 212篇 |
2011年 | 322篇 |
2010年 | 229篇 |
2009年 | 329篇 |
2008年 | 366篇 |
2007年 | 220篇 |
2006年 | 156篇 |
2005年 | 185篇 |
2004年 | 182篇 |
2003年 | 205篇 |
2002年 | 146篇 |
2001年 | 218篇 |
2000年 | 127篇 |
1999年 | 162篇 |
1998年 | 190篇 |
1997年 | 109篇 |
1996年 | 171篇 |
1995年 | 203篇 |
1994年 | 189篇 |
1993年 | 120篇 |
1992年 | 149篇 |
1991年 | 47篇 |
1990年 | 48篇 |
1989年 | 139篇 |
1988年 | 59篇 |
1987年 | 56篇 |
1986年 | 63篇 |
1985年 | 183篇 |
1984年 | 144篇 |
1983年 | 107篇 |
1982年 | 115篇 |
1981年 | 214篇 |
1980年 | 49篇 |
1979年 | 45篇 |
1978年 | 50篇 |
1977年 | 42篇 |
1975年 | 50篇 |
1974年 | 38篇 |
1973年 | 32篇 |
1972年 | 35篇 |
1971年 | 35篇 |
1970年 | 37篇 |
排序方式: 共有6892条查询结果,搜索用时 0 毫秒
951.
Singh A. Ghose D. Sarkar A.K. 《IEEE transactions on aerospace and electronic systems》2009,45(3):899-918
This paper presents an optimization of the performance of a recently proposed virtual sliding target (VST) guidance scheme in terms of maximization of its launch envelope for three-dimensional (3-D) engagements. The objective is to obtain the launch envelope of the missile using the VST guidance scheme for different lateral launch angles with respect to the line of sight (LOS) and demonstrate its superiority over kinematics-based guidance laws like proportional navigation (PN). The VST scheme uses PN as its basic guidance scheme and exploits the relation between the atmospheric properties, missile aerodynamic characteristics, and the optimal trajectory of the missile. The missile trajectory is shaped by controlling the instantaneous position and the speed of a virtual target which the missile pursues during the midcourse phase. In the proposed method it is shown that an appropriate value of initial position for the virtual target in 3-D, combined with optimized virtual target parameters, can significantly improve the launch envelope performance. The paper presents the formulation of the optimization problem, obtains the approximate models used to make the optimization problem more tractable, and finally presents the optimized performance of the missile in terms of launch envelope and shows significant improvement over kinematic-based guidance laws. The paper also proposes modification to the basic VST scheme. Some simulations using the full-fledged six degrees-of-freedom (6-DOF) models are also presented to validate the models and technique used. 相似文献
952.
E.S. Seo T. Anderson D. Angelaszek S.J. Baek J. Baylon M. Buénerd M. Copley S. Coutu L. Derome B. Fields M. Gupta J.H. Han I.J. Howley H.G. Huh Y.S. Hwang H.J. Hyun I.S. Jeong D.H. Kah K.H. Kang D.Y. Kim H.J. Kim K.C. Kim M.H. Kim K. Kwashnak J. Lee M.H. Lee J.T. Link L. Lutz A. Malinin A. Menchaca-Rocha J.W. Mitchell S. Nutter O. Ofoha H. Park I.H. Park J.M. Park P. Patterson J.R. Smith J. Wu Y.S. Yoon 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The Cosmic Ray Energetics And Mass (CREAM) instrument is configured with a suite of particle detectors to measure TeV cosmic-ray elemental spectra from protons to iron nuclei over a wide energy range. The goal is to extend direct measurements of cosmic-ray composition to the highest energies practical, and thereby have enough overlap with ground based indirect measurements to answer questions on cosmic-ray origin, acceleration and propagation. The balloon-borne CREAM was flown successfully for about 161 days in six flights over Antarctica to measure elemental spectra of Z = 1–26 nuclei over the energy range 1010 to >1014 eV. Transforming the balloon instrument into ISS-CREAM involves identification and replacement of components that would be at risk in the International Space Station (ISS) environment, in addition to assessing safety and mission assurance concerns. The transformation process includes rigorous testing of components to reduce risks and increase survivability on the launch vehicle and operations on the ISS without negatively impacting the heritage of the successful CREAM design. The project status, including results from the ongoing analysis of existing data and, particularly, plans to increase the exposure factor by another order of magnitude utilizing the International Space Station are presented. 相似文献
953.
Non-thermal components are key ingredients for understanding clusters of galaxies. In the hierarchical model of structure
formation, shocks and large-scale turbulence are unavoidable in the cluster formation processes. Understanding the amplification
and evolution of the magnetic field in galaxy clusters is necessary for modelling both the heat transport and the dissipative
processes in the hot intra-cluster plasma. The acceleration, transport and interactions of non-thermal energetic particles
are essential for modelling the observed emissions. Therefore, the inclusion of the non-thermal components will be mandatory
for simulating accurately the global dynamical processes in clusters. In this review, we summarise the results obtained with
the simulations of the formation of galaxy clusters which address the issues of shocks, magnetic field, cosmic ray particles
and turbulence. 相似文献
954.
L. Maraschi G. C. Perola A. Treves 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(13):67-70
The possibility of explaining the continuous emission of active galactic nuclei in the frame of a model of spherical accretion onto a massive black hole is discussed. Cool inhomogeneities (T 104°K) within the accretion flow could be responsible for the broad line emission if half of the accreting matter is in the dense phase. A crucial test of this hypothesis is the expected correlation between the ratio of the luminosity in lines to the total luminosity and the hardness of the continuous spectrum. 相似文献
955.
Saunders R.S. Arvidson R.E. Badhwar G.D. Boynton W.V. Christensen P.R. Cucinotta F.A. Feldman W.C. Gibbs R.G. Kloss C. Landano M.R. Mase R.A. McSmith G.W. Meyer M.A. Mitrofanov I.G. Pace G.D. Plaut J.J. Sidney W.P. Spencer D.A. Thompson T.W. Zeitlin C.J. 《Space Science Reviews》2004,110(1-2):1-36
The 2001 Mars Odyssey spacecraft, now in orbit at Mars, will observe the Martian surface at infrared and visible wavelengths to determine surface mineralogy and morphology, acquire global gamma ray and neutron observations for a full Martian year, and study the Mars radiation environment from orbit. The science objectives of this mission are to: (1) globally map the elemental composition of the surface, (2) determine the abundance of hydrogen in the shallow subsurface, (3) acquire high spatial and spectral resolution images of the surface mineralogy, (4) provide information on the morphology of the surface, and (5) characterize the Martian near-space radiation environment as related to radiation-induced risk to human explorers. To accomplish these objectives, the 2001 Mars Odyssey science payload includes a Gamma Ray Spectrometer (GRS), a multi-spectral Thermal Emission Imaging System (THEMIS), and a radiation detector, the Martian Radiation Environment Experiment (MARIE). THEMIS and MARIE are mounted on the spacecraft with THEMIS pointed at nadir. GRS is a suite of three instruments: a Gamma Subsystem (GSS), a Neutron Spectrometer (NS) and a High-Energy Neutron Detector (HEND). The HEND and NS instruments are mounted on the spacecraft body while the GSS is on a 6-m boom. Some science data were collected during the cruise and aerobraking phases of the mission before the prime mission started. THEMIS acquired infrared and visible images of the Earth-Moon system and of the southern hemisphere of Mars. MARIE monitored the radiation environment during cruise. The GRS collected calibration data during cruise and aerobraking. Early GRS observations in Mars orbit indicated a hydrogen-rich layer in the upper meter of the subsurface in the Southern Hemisphere. Also, atmospheric densities, scale heights, temperatures, and pressures were observed by spacecraft accelerometers during aerobraking as the spacecraft skimmed the upper portions of the Martian atmosphere. This provided the first in-situ evidence of winter polar warming in the Mars upper atmosphere. The prime mission for 2001 Mars Odyssey began in February 2002 and will continue until August 2004. During this prime mission, the 2001 Mars Odyssey spacecraft will also provide radio relays for the National Aeronautics and Space Administration (NASA) and European landers in early 2004. Science data from 2001 Mars Odyssey instruments will be provided to the science community via NASA’s Planetary Data System (PDS). The first PDS release of Odyssey data was in October 2002; subsequent releases occur every 3 months. 相似文献
956.
E. Caroli J. B. Stephen G. Di Cocco L. Natalucci A. Spizzichino 《Space Science Reviews》1987,45(3-4):349-403
957.
958.
Cassini Imaging Science: Instrument Characteristics And Anticipated Scientific Investigations At Saturn 总被引:1,自引:0,他引:1
Carolyn C. Porco Robert A. West Steven Squyres Alfred Mcewen Peter Thomas Carl D. Murray Anthony Delgenio Andrew P. Ingersoll Torrence V. Johnson Gerhard Neukum Joseph Veverka Luke Dones Andre Brahic Joseph A. Burns Vance Haemmerle Benjamin Knowles Douglas Dawson Thomas Roatsch Kevin Beurle William Owen 《Space Science Reviews》2004,115(1-4):363-497
The Cassini Imaging Science Subsystem (ISS) is the highest-resolution two-dimensional imaging device on the Cassini Orbiter and has been designed for investigations of the bodies and phenomena found within the Saturnian planetary system. It consists of two framing cameras: a narrow angle, reflecting telescope with a 2-m focal length and a square field of view (FOV) 0.35∘ across, and a wide-angle refractor with a 0.2-m focal length and a FOV 3.5∘ across. At the heart of each camera is a charged coupled device (CCD) detector consisting of a 1024 square array of pixels, each 12 μ on a side. The data system allows many options for data collection, including choices for on-chip summing, rapid imaging and data compression. Each camera is outfitted with a large number of spectral filters which, taken together, span the electromagnetic spectrum from 200 to 1100 nm. These were chosen to address a multitude of Saturn-system scientific objectives: sounding the three-dimensional cloud structure and meteorology of the Saturn and Titan atmospheres, capturing lightning on both bodies, imaging the surfaces of Saturn’s many icy satellites, determining the structure of its enormous ring system, searching for previously undiscovered Saturnian moons (within and exterior to the rings), peering through the hazy Titan atmosphere to its yet-unexplored surface, and in general searching for temporal variability throughout the system on a variety of time scales. The ISS is also the optical navigation instrument for the Cassini mission. We describe here the capabilities and characteristics of the Cassini ISS, determined from both ground calibration data and in-flight data taken during cruise, and the Saturn-system investigations that will be conducted with it. At the time of writing, Cassini is approaching Saturn and the images returned to Earth thus far are both breathtaking and promising.This revised version was published online in July 2005 with a corrected cover date. 相似文献
959.
R. E. Schulte-Ladbeck G. C. Clayton C. Leitherer L. Drissen C. Robert A. Nota J. WM. Parker 《Space Science Reviews》1993,66(1-4):193-198
We are in the process of surveying the linear polarization in luminous, early-type stars. We here report on new observations of the B [e] stars S 18 and R 50, and of the Luminous Blue Variables HR Car, R 143, and HD 160529. Together with previously published data, these observations provide clear evidence for the presence of intrinsic polarization in 1 B[e] star (HD 34664) and in 5 LBVs ( Car, P Cyg, R 127, AG Car, and HR Car). The data indicate that anisotropic stellar winds are a common occurrence among massive stars in these particular evolutionary stages. For such stars, mass-loss rates estimated using the assumption of a spherical, homogeneous and stationary outflow may be in error. 相似文献
960.
Gawron T.E. Klembowski W. Pikielny J. Jakubiak A. Wojtkiewicz A. Czyz Z.H. Tuszynski M. Centkowski G. 《IEEE transactions on aerospace and electronic systems》1991,27(5):748-783
Polish radar research and development since 1953 is reviewed, covering the development and production of surveillance radars, height finders, tracking radars, air traffic control (ATC) radars and systems, and marine and Doppler radars. Some current work, including an L-band ATC radar for enroute control, a weather channel for primary surveillance radar, signal detection in non-Gaussian clutter, adaptive MTI filters and postdetection filtering, and a basic approach to radar polarimetry, is examined.<> 相似文献