首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6851篇
  免费   16篇
  国内免费   20篇
航空   3067篇
航天技术   2406篇
综合类   21篇
航天   1393篇
  2021年   74篇
  2019年   45篇
  2018年   160篇
  2017年   107篇
  2016年   112篇
  2015年   51篇
  2014年   178篇
  2013年   222篇
  2012年   212篇
  2011年   322篇
  2010年   229篇
  2009年   329篇
  2008年   366篇
  2007年   220篇
  2006年   156篇
  2005年   185篇
  2004年   182篇
  2003年   205篇
  2002年   145篇
  2001年   218篇
  2000年   127篇
  1999年   162篇
  1998年   190篇
  1997年   109篇
  1996年   171篇
  1995年   203篇
  1994年   189篇
  1993年   120篇
  1992年   149篇
  1991年   47篇
  1990年   48篇
  1989年   139篇
  1988年   59篇
  1987年   56篇
  1986年   63篇
  1985年   183篇
  1984年   144篇
  1983年   107篇
  1982年   115篇
  1981年   214篇
  1980年   49篇
  1979年   45篇
  1978年   50篇
  1977年   42篇
  1975年   50篇
  1974年   38篇
  1973年   32篇
  1972年   35篇
  1971年   35篇
  1970年   37篇
排序方式: 共有6887条查询结果,搜索用时 15 毫秒
141.
We analyze the multifractal scaling of the modulus of the interplanetary magnetic field near and far upstream of the Earth’s bow shock, measured by Cluster and ACE, respectively, from 1 to 3 February 2002. The maximum order of the structure function is carefully estimated for each time series using two different techniques, to ensure the validity of our high-order statistics. The first technique consists of plotting the integrand of the pth order structure function, and the second technique is a quantitative method which relies on the power-law scaling of the extreme events. We compare the scaling exponents computed from the structure functions of magnetic field differences with the predictions obtained by the She–Lévêque model of intermittency in anisotropic magnetohydrodynamic turbulence. Our results show a good agreement between the model and the observations near and far upstream of the Earth’s bow shock, rendering support for the modelling of universal scaling laws based on the Kolmogorov phenomenology in the presence of sheet-like dissipative structures.  相似文献   
142.
We compute a series of Jason-2 GPS and SLR/DORIS-based orbits using ITRF2005 and the std0905 standards ( Lemoine et al., 2010). Our GPS and SLR/DORIS orbit data sets span a period of 2 years from cycle 3 (July 2008) to cycle 74 (July 2010). We extract the Jason-2 orbit frame translational parameters per cycle by the means of a Helmert transformation between a set of reference orbits and a set of test orbits. We compare the annual terms of these time-series to the annual terms of two different geocenter motion models where biases and trends have been removed. Subsequently, we include the annual terms of the modeled geocenter motion as a degree-1 loading displacement correction to the GPS and SLR/DORIS tracking network of the POD process. Although the annual geocenter motion correction would reflect a stationary signal in time, under ideal conditions, the whole geocenter motion is a non-stationary process that includes secular trends. Our results suggest that our GSFC Jason-2 GPS-based orbits are closely tied to the center of mass (CM) of the Earth consistent with our current force modeling, whereas GSFC’s SLR/DORIS-based orbits are tied to the origin of ITRF2005, which is the center of figure (CF) for sub-secular scales. We quantify the GPS and SLR/DORIS orbit centering and how this impacts the orbit radial error over the globe, which is assimilated into mean sea level (MSL) error, from the omission of the annual term of the geocenter correction. We find that for the SLR/DORIS std0905 orbits, currently used by the oceanographic community, only the negligence of the annual term of the geocenter motion correction results in a – 4.67 ± 3.40 mm error in the Z-component of the orbit frame which creates 1.06 ± 2.66 mm of systematic error in the MSL estimates, mainly due to the uneven distribution of the oceans between the North and South hemisphere.  相似文献   
143.
In the past, clues on the potential radiogenic activity of the lunar interior have been obtained from the isotopic composition of noble gases like Argon. Excess Argon (40) relative to Argon (36), as compared to the solar wind composition, is generally ascribed to the radiogenic activity of the lunar interior. Almost all the previous estimates were based on, ‘on-the-spot’ measurements from the landing sites. Relative concentration of the isotopes of 40Ar and 36Ar along a meridian by the Chandra’s Altitudinal Composition Explorer (CHACE) experiment, on the Moon Impact Probe (MIP) of India’s first mission to Moon, has independently yielded clues on the possible spatial heterogeneity in the radiogenic activity of the lunar interior in addition to providing indicative ‘antiquity’ of the lunar surface along the ground track over the near side of the moon. These results are shown to broadly corroborate the independent topography measurements by the Lunar Laser Ranging Instrument (LLRI) in the main orbiter Chandrayaan-1. The unique combination of these experiments provided high spatial resolution data while indicating the possible close linkages between the lunar interior and the lunar ambience.  相似文献   
144.
International Reference Ionosphere (IRI) model is the widely used empirical model for ionospheric predictions, especially TEC which is an important parameter for radio navigation and communication. The Fortran based IRI-2007 does not support real-time interactive visualization and debugging. Therefore, the source code is converted into Matlab and is validated for the purposes of this study. This facilitates easy representation of results and for near real-time implementation of IRI in the applications including spacecraft launching, now casting, pseudolite based navigation systems etc. In addition, the vertical delay results over the equatorial region derived from IRI and GPS data of three IGS stations namely Libreville (Garbon, Africa), Brasilia (Brazil, South America) and Hyderabad (India, Asia) are compared. As the IRI model does not account for plasmasphere TEC, the vertical delays are underestimated compared to vertical delays of GPS signals. Therefore, the model should be modified accordingly for precise TEC estimation.  相似文献   
145.
Today’s space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 km with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry in SSO, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome.  相似文献   
146.
Employing coronagraphic and EUV observations close to the solar surface made by the Solar Terrestrial Relations Observatory (STEREO) mission, we determined the heliocentric distance of coronal mass ejections (CMEs) at the starting time of associated metric type II bursts. We used the wave diameter and leading edge methods and measured the CME heights for a set of 32 metric type II bursts from solar cycle 24. We minimized the projection effects by making the measurements from a view that is roughly orthogonal to the direction of the ejection. We also chose image frames close to the onset times of the type II bursts, so no extrapolation was necessary. We found that the CMEs were located in the heliocentric distance range from 1.20 to 1.93 solar radii (Rs), with mean and median values of 1.43 and 1.38 Rs, respectively. We conclusively find that the shock formation can occur at heights substantially below 1.5 Rs. In a few cases, the CME height at type II onset was close to 2 Rs. In these cases, the starting frequency of the type II bursts was very low, in the range 25–40 MHz, which confirms that the shock can also form at larger heights. The starting frequencies of metric type II bursts have a weak correlation with the measured CME/shock heights and are consistent with the rapid decline of density with height in the inner corona.  相似文献   
147.
Land subsidence, due to natural or anthropogenic processes, causes significant costs in both economic and structural aspects. That part of subsidence observed most is the result of human activities, which relates to underground exploitation. Since the gradual surface deformation is a consequence of hydrocarbon reservoirs extraction, the process of displacement monitoring is amongst the petroleum industry priorities. Nowadays, Differential SAR Interferometry, in which satellite images are utilized for elevation change detection and analysis – in a millimetre scale, has proved to be a more real-time and cost-effective technology in contrast to the traditional surveying method. In this study, surface displacements in Aghajari oil field, i.e. one of the most industrious Iranian hydrocarbon sites, are being examined using radar observations. As in a number of interferograms, the production wells inspection reveals that surface deformation signals develop likely due to extraction in a period of several months. In other words, different subsidence or uplift rates and deformation styles occur locally depending on the geological conditions and excavation rates in place.  相似文献   
148.
149.
150.
Performance of efficient single-person cardiopulmonary resuscitation (CPR) is vital to maintain cardiac and cerebral perfusion during the 2–4 min it takes for deployment of advanced life support during a space mission. The aim of the present study was to investigate potential differences in upper body muscle activity during CPR performance at terrestrial gravity (+1Gz) and in simulated microgravity (μG). Muscle activity of the triceps brachii, erector spinae, rectus abdominis and pectoralis major was measured via superficial electromyography in 20 healthy male volunteers. Four sets of 30 external chest compressions (ECCs) were performed on a mannequin. Microgravity was simulated using a body suspension device and harness; the Evetts–Russomano (ER) method was adopted for CPR performance in simulated microgravity. Heart rate and perceived exertion via Borg scores were also measured. While a significantly lower depth of ECCs was observed in simulated microgravity, compared with +1Gz, it was still within the target range of 40–50 mm. There was a 7.7% decrease of the mean (±SEM) ECC depth from 48 ± 0.3 mm at +1Gz, to 44.3 ± 0.5 mm during microgravity simulation (p < 0.001). No significant difference in number or rate of compressions was found between the two conditions. Heart rate displayed a significantly larger increase during CPR in simulated microgravity than at +1Gz, the former presenting a mean (±SEM) of 23.6 ± 2.91 bpm and the latter, 76.6 ± 3.8 bpm (p < 0.001). Borg scores were 70% higher post-microgravity compressions (17 ± 1) than post +1Gz compressions (10 ± 1) (p < 0.001). Intermuscular comparisons showed the triceps brachii to have significantly lower muscle activity than each of the other three tested muscles, in both +1Gz and microgravity. As shown by greater Borg scores and heart rate increases, CPR performance in simulated microgravity is more fatiguing than at +1Gz. Nevertheless, no significant difference in muscle activity between conditions was found, a result that is favourable for astronauts, given the inevitable muscular and cardiovascular deconditioning that occurs during space travel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号