全文获取类型
收费全文 | 6885篇 |
免费 | 31篇 |
国内免费 | 14篇 |
专业分类
航空 | 3087篇 |
航天技术 | 2425篇 |
综合类 | 22篇 |
航天 | 1396篇 |
出版年
2021年 | 74篇 |
2019年 | 45篇 |
2018年 | 160篇 |
2017年 | 107篇 |
2016年 | 112篇 |
2015年 | 51篇 |
2014年 | 180篇 |
2013年 | 225篇 |
2012年 | 212篇 |
2011年 | 325篇 |
2010年 | 233篇 |
2009年 | 331篇 |
2008年 | 373篇 |
2007年 | 221篇 |
2006年 | 156篇 |
2005年 | 187篇 |
2004年 | 182篇 |
2003年 | 205篇 |
2002年 | 147篇 |
2001年 | 219篇 |
2000年 | 127篇 |
1999年 | 162篇 |
1998年 | 190篇 |
1997年 | 110篇 |
1996年 | 171篇 |
1995年 | 203篇 |
1994年 | 189篇 |
1993年 | 120篇 |
1992年 | 152篇 |
1991年 | 47篇 |
1990年 | 48篇 |
1989年 | 141篇 |
1988年 | 59篇 |
1987年 | 57篇 |
1986年 | 63篇 |
1985年 | 183篇 |
1984年 | 144篇 |
1983年 | 109篇 |
1982年 | 116篇 |
1981年 | 215篇 |
1980年 | 49篇 |
1979年 | 46篇 |
1978年 | 50篇 |
1977年 | 42篇 |
1975年 | 50篇 |
1974年 | 38篇 |
1973年 | 32篇 |
1972年 | 35篇 |
1971年 | 35篇 |
1970年 | 37篇 |
排序方式: 共有6930条查询结果,搜索用时 15 毫秒
331.
J O Kessler N A Hill R Strittmatter D Wiseley 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,21(8-9):1269-1275
Experiments and calculations on the trajectories of micron-sized spheres, suspended in a fluid that fills a dosed container which rotates about an axis perpendicular to g, relate to the planning and interpretation of clinostat experiments. For low Reynolds number motion, the orbits are nearly circular, the radius being inversely proportional to the rotation rate. The swimming direction of micro-organisms can be affected by light, gravity, vorticity etc. The trajectories of algae swimming in steadily rotating environments have been observed and compared with theoretical predictions for ideal gyrotactic micro-organisms, thus providing some insights into the mechanisms of gravitaxis, gyrotaxis and the behaviour of the cells. 相似文献
332.
B. Holback S. -E. Jansson L. Åhlén G. Lundgren L. Lyngdal S. Powell A. Meyer 《Space Science Reviews》1994,70(3-4):577-592
The Wave Experiment, F4, on the Swedish/German satelliteFreja, is designed to measure the electric wave fields up to 4 MHz, the magnetic wave fields up to 16 kHz and the plasma density and its relative variations up to 2 kHz. Six wave signals and four density probe signals can be measured simultaneously. The wave forms of all signals are transmitted to ground without any analysis onboard. The limited TM allocation does not allow continuous sampling of the wave signals, so normally the measurements are made in snapshots of various lengths dependent on sampling frequency, etc. Continuous sampling can be made for shorter time periods by using a 6 Mbyte memory as a buffer. 相似文献
333.
Valentin A. Shuvalov Dmitry N. Lazuchenkov Nikolai B. Gorev Galina S. Kochubei 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(1):355-366
Using a cylindrical Langmuir probe and the authors’ proprietary two-channel pressure transducer, ionospheric plasma parameter distributions along the orbit of the Sich-2 satellite (Ukraine, 2011–2012) were measured. This paper is concerned with identifying the space–time location of ionospheric plasma disturbance sources, including the epicenters of actual earthquakes (before or during the satellite flyover) and incipient earthquakes on the subsatellite track, from the measured distributions of the electron density and temperature and the neutral particle temperature along the satellite orbit. To do this, the measured ionospheric plasma parameter distributions are connected to the coordinates on the subsatellite track.It is shown that local disturbances in the electron density and temperature and neutral particle temperature distributions in the satellite orbit in the ionosphere may serve as indicators of seismic activity on the subsatellite track. The epicenters of incipient earthquakes may be set off from other plasma parameter disturbance sources associated with seismic activity using information provided by special monitoring and survey centers that monitor the current seismic situation. 相似文献
334.
A.H. Brown 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(12):299-303
Growth process generate plant form and relate to most physiological functions. The Earth's gravity force affects plant growth in both obvious and subtle ways. It is a major environmental influence on morphology and physiology of plants. Gravity is less important as an agent for plant stress than as an environmental signal to guide growth. The plant's bioaccelerometers are remarkably sensitive, especially in hypogravity. Simulation (clinostat) studies and experiments in satellite laboratories are needed to understand the sensing, transduction, and response characteristics of g related mechanisms. By examining how plants alter growth processes to accomplish developmental or physiological “objectives” we may find it pragmatically desirable to ask ourselves how we might design a plant to achieve such responses to environmental influences. Examples of this design engineering approach for gravity related effects are described as an aid to experimentation. 相似文献
335.
Chikovani V.V. Yatsenko Yu.A. Barabashov A.S. Marusyk P.I. Umakhanov E.O. Taturin V.N. 《Aerospace and Electronic Systems Magazine, IEEE》2009,24(5):40-43
Metallic resonator Q-factor is very sensitive to the resonator's material, its thermal and chemical treatment, design, and environment; i.e., pressure and temperature. In order to obtain higher accuracy for CVG it is necessary to use resonator evacuation. Resonator mass plays a very important role in sensitivity to angle rate, in stability of vibration, in response to environmental condition changes, and also to external vibration and shock resistance. tnnalabs Holding Inc. uses a cylindrical resonator with increased rim thickness of up to 2 mmn and more. This concerns resonator material and design parameters selection, material thermal treatment to increase resonator Q-factor, and improved control algorithms in order to increase metallic CVG accuracy. As a result, CVG bias instability of 0.025 degth and random walk of 0.008 degvh for the resonator diameter 43 mmn, and 0.2 deg/h for the resonator diameter 25 mm were obtained. Future opportunities for Innalabs CVG is also discussed herein. Test results are presented for CVG43 and CVG25. Three-axis CVG unit under control of one DSP Sharc and IMU parameters are forecasted. 相似文献
336.
Diffusive shock acceleration is the theory of particle acceleration through multiple shock crossings. In order for this process to proceed at a rate that can be reconciled with observations of high-energy electrons in the vicinity of the shock, and for cosmic rays protons to be accelerated to energies up to observed galactic values, significant magnetic field amplification is required. In this review we will discuss various theories on how magnetic field amplification can proceed in the presence of a cosmic ray population. On both short and long length scales, cosmic ray streaming can induce instabilities that act to amplify the magnetic field. Developments in this area that have occurred over the past decade are the main focus of this paper. 相似文献
337.
We present our current knowledge of the solar chemical composition based on the recent significant downward revision of the solar photospheric abundances of the most abundant metals. These new solar abundances result from the use of a 3D hydrodynamic model of the solar atmosphere instead of the classical 1D hydrostatic models, accounting for departures from LTE, and improved atomic and molecular data. With these abundances, the new solar metallicity, Z, decreases to Z=0.012, almost a factor of two lower than earlier widely used values. We compare our values with data from other sources and analyse a number of impacts of these new photospheric abundances. While resolving a number of longstanding problems, the new 3D-based solar photospheric composition also poses serious challenges for the standard solar model as judged by helioseismology. 相似文献
338.
R. C. Wiens D. S. Burnett C. M. Hohenberg A. Meshik V. Heber A. Grimberg R. Wieler D. B. Reisenfeld 《Space Science Reviews》2007,130(1-4):161-171
The Genesis mission returned samples of solar wind to Earth in September 2004 for ground-based analyses of solar-wind composition, particularly for isotope ratios. Substrates, consisting mostly of high-purity semiconductor materials, were exposed to the solar wind at L1 from December 2001 to April 2004. In addition to a bulk sample of the solar wind, separate samples of coronal hole (CH), interstream (IS), and coronal mass ejection material were obtained. Although many substrates were broken upon landing due to the failure to deploy the parachute, a number of results have been obtained, and most of the primary science objectives will likely be met. These objectives include He, Ne, Ar, Kr, and Xe isotope ratios in the bulk solar wind and in different solar-wind regimes, and 15N/14N and 18O/17O/16O to high precision. The greatest successes to date have been with the noble gases. Light noble gases from bulk solar wind and separate solar-wind regime samples have now been analyzed. Helium results show clear evidence of isotopic fractionation between CH and IS samples, consistent with simplistic Coulomb drag theory predictions of fractionation between the photosphere and different solar-wind regimes, though fractionation by wave heating is also a possible explanation. Neon results from closed system stepped etching of bulk metallic glass have revealed the nature of isotopic fractionation as a function of depth, which in lunar samples have for years deceptively suggested the presence of an additional, energetic component in solar wind trapped in lunar grains and meteorites. Isotope ratios of the heavy noble gases, nitrogen, and oxygen are in the process of being measured. 相似文献
339.
340.
Chien S. Knight R. Stechert A. Sherwood R. Rabideau G. 《Aerospace and Electronic Systems Magazine, IEEE》2009,24(1):23-30
An autonomous spacecraft must balance long-term and short-term considerations. It must perform purposeful activities that ensure long-term science and engineering goals are achieved and ensure that it maintains positive resource margins. This requires planning in advance to avoid a series of shortsighted decisions that can lead to failure. However, it must also respond in a timely fashion to a somewhat dynamic and unpredictable environment. Thus, in terms of high-level, goal-oriented activity, spacecraft plans must often be modified due to fortuitous events such as early completion of observations and setbacks such as failure to acquire a guidestar for a science observation. This describes an integrated planning and execution architecture that supports continuous modification and updating of a current working plan in light of a changing operating context. 相似文献