全文获取类型
收费全文 | 6853篇 |
免费 | 18篇 |
国内免费 | 21篇 |
专业分类
航空 | 3069篇 |
航天技术 | 2409篇 |
综合类 | 21篇 |
航天 | 1393篇 |
出版年
2021年 | 74篇 |
2019年 | 45篇 |
2018年 | 161篇 |
2017年 | 107篇 |
2016年 | 112篇 |
2015年 | 51篇 |
2014年 | 178篇 |
2013年 | 223篇 |
2012年 | 212篇 |
2011年 | 322篇 |
2010年 | 229篇 |
2009年 | 329篇 |
2008年 | 366篇 |
2007年 | 220篇 |
2006年 | 156篇 |
2005年 | 185篇 |
2004年 | 182篇 |
2003年 | 205篇 |
2002年 | 145篇 |
2001年 | 218篇 |
2000年 | 127篇 |
1999年 | 162篇 |
1998年 | 190篇 |
1997年 | 109篇 |
1996年 | 171篇 |
1995年 | 203篇 |
1994年 | 189篇 |
1993年 | 120篇 |
1992年 | 149篇 |
1991年 | 47篇 |
1990年 | 48篇 |
1989年 | 139篇 |
1988年 | 59篇 |
1987年 | 56篇 |
1986年 | 63篇 |
1985年 | 183篇 |
1984年 | 144篇 |
1983年 | 107篇 |
1982年 | 115篇 |
1981年 | 214篇 |
1980年 | 49篇 |
1979年 | 45篇 |
1978年 | 50篇 |
1977年 | 42篇 |
1975年 | 50篇 |
1974年 | 38篇 |
1973年 | 32篇 |
1972年 | 35篇 |
1971年 | 35篇 |
1970年 | 37篇 |
排序方式: 共有6892条查询结果,搜索用时 15 毫秒
251.
Probing the first stars and black holes in the early Universe with the Dark Ages Radio Explorer (DARE) 总被引:1,自引:0,他引:1
Jack O. Burns J. Lazio S. Bale J. Bowman R. Bradley C. Carilli S. Furlanetto G. Harker A. Loeb J. Pritchard 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
A concept for a new space-based cosmology mission called the Dark Ages Radio Explorer (DARE) is presented in this paper. DARE’s science objectives include: (1) When did the first stars form? (2) When did the first accreting black holes form? (3) When did Reionization begin? (4) What surprises does the end of the Dark Ages hold (e.g., Dark Matter decay)? DARE will use the highly-redshifted hyperfine 21-cm transition from neutral hydrogen to track the formation of the first luminous objects by their impact on the intergalactic medium during the end of the Dark Ages and during Cosmic Dawn (redshifts z = 11–35). It will measure the sky-averaged spin temperature of neutral hydrogen at the unexplored epoch 80–420 million years after the Big Bang, providing the first evidence of the earliest stars and galaxies to illuminate the cosmos and testing our models of galaxy formation. DARE’s approach is to measure the expected spectral features in the sky-averaged, redshifted 21-cm signal over a radio bandpass of 40–120 MHz. DARE orbits the Moon for a mission lifetime of 3 years and takes data above the lunar farside, the only location in the inner solar system proven to be free of human-generated radio frequency interference and any significant ionosphere. The science instrument is composed of a low frequency radiometer, including electrically-short, tapered, bi-conical dipole antennas, a receiver, and a digital spectrometer. The smooth frequency response of the antennas and the differential spectral calibration approach using a Markov Chain Monte Carlo technique will be applied to detect the weak cosmic 21-cm signal in the presence of the intense solar system and Galactic foreground emissions. 相似文献
252.
The planetary radio astronomy experiment will measure radio spectra of planetary emissions in the range 1.2 kHz to 40.5 MHz. These emissions result from wave-particle-plasma interactions in the magnetospheres and ionospheres of the planets. At Jupiter, they are strongly modulated by the Galilean satellite Io.As the spacecraft leave the Earth's vicinity, we will observe terrestrial kilometric radiation, and for the first time, determine its polarization (RH and LH power separately). At the giant planets, the source of radio emission at low frequencies is not understood, but will be defined through comparison of the radio emission data with other particles and fields experiments aboard Voyager, as well as with optical data. Since, for Jupiter, as for the Earth, the radio data quite probably relate to particle precipitation, and to magnetic field strength and orientation in the polar ionosphere, we hope to be able to elucidate some characteristics of Jupiter auroras.Together with the plasma wave experiment, and possibly several optical experiments, our data can demonstrate the existence of lightning on the giant planets and on the satellite Titan, should it exist. Finally, the Voyager missions occur near maximum of the sunspot cycle. Solar outburst types can be identified through the radio measurements; when the spacecraft are on the opposite side of the Sun from the Earth we can identify solar flare-related events otherwise invisible on the Earth. 相似文献
253.
254.
The receipt of the Pioneer Award has given me a chance to look back over my professional life and the opportunity to take stock of how I helped shape a small part of the world. While I hope this process entertains my contemporaries, more importantly, I hope it stimulates those that are engaged in actively shaping the present. To describe the need for automatic picture transmission (APT), I must retrace the historical development of meteorological satellites. The idea for weather observations from a satellite originated with a small group of meteorologists at the U.S. Army Signal Corps Research and Development Lab. at Ft. Monmouth, N.J., and resulted in the design of Vanguard II. The Tiros and TOS series of satellites, and the design of Nimbus, followed soon thereafter. However, a faster picture dissemination than was available at that time was needed, and it was this necessity that sparked the development of APT. Nimbus was originally intended to be an operational system, but the advent of simpler, less costly stabilization systems made the Tiros evolution the clear winner. The geosynchronous weather satellites started nearly a decade later and evolved from the NASA Application Technology Satellite (ATS) series. All three systems, existing polar orbiting weather satellites, APT, and geosynchronous weather satellites, have changed meteorology and the reliability of weather forecasting profoundly. 相似文献
255.
We report the discovery that for latitudes above 40°S, the observed recurring modulation of cosmic rays and anomalous nuclei occurs without the detection byUlysses of the solar wind velocity and magnetic field recurring enhancements that have, heretofore at lower latitudes, defined corotating interaction regions—i.e., the mechanism producing the recurring intensity variations >40°S appears to be located beyond the radial range ofUlysses. 相似文献
256.
Crider Dana H. Brain David A. Acuña Mario H. Vignes Didier Mazelle Christian Bertucci Cesar 《Space Science Reviews》2004,111(1-2):203-221
We examine the magnetic field in the martian magnetosheath due to solar wind draping. Mars Global Surveyor provided 3-D vector magnetic field measurements at a large range of altitudes, local times, and solar zenith angles as the spacecraft orbit evolved. We choose orbits with very clean signatures of draping to establish the nominal morphology of the magnetic field lines at local times of near-subsolar and near-terminator. Next, using a compilation of data from Mars Global Surveyor, we determine the average magnetic field morphology in the martian magnetosheath due to the solar wind interaction. The topology of the field is as expected from previous observations and predictions. The magnetic field magnitude peaks at low altitude and noon magnetic local time and decreases away from that point. The magnetic field has an inclination from the local horizontal of 5.6° on average in the dayside magnetosheath and 12.5° on the nightside. The inclination angle is closest to zero at noon magnetic local time and low altitude. It increases both upward and to later local times. The magnetic field in the induced magnetotail flares out from the Mars—Sun direction by 21°. Finally, we compare the observations to gasdynamic model predictions and find that the shocked solar wind flow in the martian magnetosheath can be treated as a gasdynamic flow with the magnetic pileup boundary as the inner boundary to the flow. 相似文献
257.
The Magnetic Field of Mercury 总被引:1,自引:0,他引:1
Brian J. Anderson Mario H. Acuña Haje Korth James A. Slavin Hideharu Uno Catherine L. Johnson Michael E. Purucker Sean C. Solomon Jim M. Raines Thomas H. Zurbuchen George Gloeckler Ralph L. McNutt Jr. 《Space Science Reviews》2010,152(1-4):307-339
The magnetic field strength of Mercury at the planet’s surface is approximately 1% that of Earth’s surface field. This comparatively low field strength presents a number of challenges, both theoretically to understand how it is generated and observationally to distinguish the internal field from that due to the solar wind interaction. Conversely, the small field also means that Mercury offers an important opportunity to advance our understanding both of planetary magnetic field generation and magnetosphere-solar wind interactions. The observations from the Mariner 10 magnetometer in 1974 and 1975, and the MESSENGER Magnetometer and plasma instruments during the probe’s first two flybys of Mercury on 14 January and 6 October 2008, provide the basis for our current knowledge of the internal field. The external field arising from the interaction of the magnetosphere with the solar wind is more prominent near Mercury than for any other magnetized planet in the Solar System, and particular attention is therefore paid to indications in the observations of deficiencies in our understanding of the external field. The second MESSENGER flyby occurred over the opposite hemisphere from the other flybys, and these newest data constrain the tilt of the planetary moment from the planet’s spin axis to be less than 5°. Considered as a dipole field, the moment is in the range 240 to 270 nT-R M 3 , where R M is Mercury’s radius. Multipole solutions for the planetary field yield a smaller dipole term, 180 to 220 nT-R M 3 , and higher-order terms that together yield an equatorial surface field from 250 to 290 nT. From the spatial distribution of the fit residuals, the equatorial data are seen to reflect a weaker northward field and a strongly radial field, neither of which can be explained by a centered-dipole matched to the field measured near the pole by Mariner 10. This disparity is a major factor controlling the higher-order terms in the multipole solutions. The residuals are not largest close to the planet, and when considered in magnetospheric coordinates the residuals indicate the presence of a cross-tail current extending to within 0.5R M altitude on the nightside. A near-tail current with a density of 0.1 μA/m2 could account for the low field intensities recorded near the equator. In addition, the MESSENGER flybys include the first plasma observations from Mercury and demonstrate that solar wind plasma is present at low altitudes, below 500 km. Although we can be confident in the dipole-only moment estimates, the data in hand remain subject to ambiguities for distinguishing internal from external contributions. The anticipated observations from orbit at Mercury, first from MESSENGER beginning in March 2011 and later from the dual-spacecraft BepiColombo mission, will be essential to elucidate the higher-order structure in the magnetic field of Mercury that will reveal the telltale signatures of the physics responsible for its generation. 相似文献
258.
Guerci J.R. Goetz R.A. DiModica J. 《IEEE transactions on aerospace and electronic systems》1994,30(4):1090-1093
A relatively simple method is presented which eliminates previously reported (Oct. 1985) erratic estimation performance associated with Cartesian formulations of the extended Kalman filter (EKF) for the 2D angle-only emitter location problem. The technique is based on an initialization procedure which combines a priori probability density function (pdf) information with single measurement a posteriori pdf information in a manner which is more efficient than the EKF. Simulation results are presented which demonstrate the utility of the technique as compared with a previously offered modified gain EKF 相似文献
259.
The Plasma and Suprathermal Ion Composition (PLASTIC) Investigation on the STEREO Observatories 总被引:1,自引:0,他引:1
A. B. Galvin L. M. Kistler M. A. Popecki C. J. Farrugia K. D. C. Simunac L. Ellis E. Möbius M. A. Lee M. Boehm J. Carroll A. Crawshaw M. Conti P. Demaine S. Ellis J. A. Gaidos J. Googins M. Granoff A. Gustafson D. Heirtzler B. King U. Knauss J. Levasseur S. Longworth K. Singer S. Turco P. Vachon M. Vosbury M. Widholm L. M. Blush R. Karrer P. Bochsler H. Daoudi A. Etter J. Fischer J. Jost A. Opitz M. Sigrist P. Wurz B. Klecker M. Ertl E. Seidenschwang R. F. Wimmer-Schweingruber M. Koeten B. Thompson D. Steinfeld 《Space Science Reviews》2008,136(1-4):437-486
The Plasma and Suprathermal Ion Composition (PLASTIC) investigation provides the in situ solar wind and low energy heliospheric ion measurements for the NASA Solar Terrestrial Relations Observatory Mission, which consists of two spacecraft (STEREO-A, STEREO-B). PLASTIC-A and PLASTIC-B are identical. Each PLASTIC is a time-of-flight/energy mass spectrometer designed to determine the elemental composition, ionic charge states, and bulk flow parameters of major solar wind ions in the mass range from hydrogen to iron. PLASTIC has nearly complete angular coverage in the ecliptic plane and an energy range from ~0.3 to 80 keV/e, from which the distribution functions of suprathermal ions, including those ions created in pick-up and local shock acceleration processes, are also provided. 相似文献
260.
Mende S.B. Heetderks H. Frey H.U. Lampton M. Geller S.P. Abiad R. Siegmund O.H.W. Tremsin A.S. Spann J. Dougani H. Fuselier S.A. Magoncelli A.L. Bumala M.B. Murphree S. Trondsen T. 《Space Science Reviews》2000,91(1-2):271-285
The Far Ultraviolet Wideband Imaging Camera (WIC) complements the magnetospheric images taken by the IMAGE satellite instruments with simultaneous global maps of the terrestrial aurora. Thus, a primary requirement of WIC is to image the total intensity of the aurora in wavelength regions most representative of the auroral source and least contaminated by dayglow, have sufficient field of view to cover the entire polar region from spacecraft apogee and have resolution that is sufficient to resolve auroras on a scale of 1 to 2 latitude degrees. The instrument is sensitive in the spectral region from 140–190 nm. The WIC is mounted on the rotating IMAGE spacecraft viewing radially outward and has a field of view of 17° in the direction parallel to the spacecraft spin axis. Its field of view is 30° in the direction perpendicular to the spin axis, although only a 17°×17° image of the Earth is recorded. The optics was an all-reflective, inverted Cassegrain Burch camera using concentric optics with a small convex primary and a large concave secondary mirror. The mirrors were coated by a special multi-layer coating, which has low reflectivity in the visible and near UV region. The detector consists of a MCP-intensified CCD. The MCP is curved to accommodate the focal surface of the concentric optics. The phosphor of the image intensifier is deposited on a concave fiberoptic window, which is then coupled to the CCD with a fiberoptic taper. The camera head operates in a fast frame transfer mode with the CCD being read approximately 30 full frames (512×256 pixel) per second with an exposure time of 0.033 s. The image motion due to the satellite spin is minimal during such a short exposure. Each image is electronically distortion corrected using the look up table scheme. An offset is added to each memory address that is proportional to the image shift due to satellite rotation, and the charge signal is digitally summed in memory. On orbit, approximately 300 frames will be added to produce one WIC image in memory. The advantage of the electronic motion compensation and distortion correction is that it is extremely flexible, permitting several kinds of corrections including motions parallel and perpendicular to the predicted axis of rotation. The instrument was calibrated by applying ultraviolet light through a vacuum monochromator and measuring the absolute responsivity of the instrument. To obtain the data for the distortion look up table, the camera was turned through various angles and the input angles corresponding to a pixel matrix were recorded. It was found that the spectral response peaked at 150 nm and fell off in either direction. The equivalent aperture of the camera, including mirror reflectivities and effective photocathode quantum efficiency, is about 0.04 cm2. Thus, a 100 Rayleigh aurora is expected to produce 23 equivalent counts per pixel per 10 s exposure at the peak of instrument response. 相似文献