首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9137篇
  免费   56篇
  国内免费   44篇
航空   4230篇
航天技术   3156篇
综合类   91篇
航天   1760篇
  2021年   96篇
  2019年   52篇
  2018年   176篇
  2017年   144篇
  2016年   123篇
  2015年   73篇
  2014年   218篇
  2013年   273篇
  2012年   256篇
  2011年   405篇
  2010年   299篇
  2009年   421篇
  2008年   480篇
  2007年   285篇
  2006年   231篇
  2005年   259篇
  2004年   228篇
  2003年   275篇
  2002年   205篇
  2001年   287篇
  2000年   191篇
  1999年   224篇
  1998年   250篇
  1997年   177篇
  1996年   216篇
  1995年   266篇
  1994年   262篇
  1993年   158篇
  1992年   198篇
  1991年   82篇
  1990年   77篇
  1989年   188篇
  1988年   85篇
  1987年   79篇
  1986年   81篇
  1985年   247篇
  1984年   191篇
  1983年   155篇
  1982年   154篇
  1981年   272篇
  1980年   70篇
  1979年   65篇
  1978年   75篇
  1977年   59篇
  1976年   48篇
  1975年   78篇
  1974年   55篇
  1972年   64篇
  1971年   59篇
  1970年   50篇
排序方式: 共有9237条查询结果,搜索用时 298 毫秒
951.
Responses of low-latitude ionospheric critical frequency of F2 layer to geomagnetic activities in different seasons and under different levels of solar activity are investigated by analyzing the ionospheric foF2 data from DPS-4 Digisonde in Hainan Observatory during 2002–2005. The results are as follows: (1) the response of foF2 to geomagnetic activity in Hainan shows obvious diurnal variation except for the summer in low solar activity period. Generally, geomagnetic activity will cause foF2 to increase at daytime and decrease at nighttime. The intensity of response of foF2 is stronger at nighttime than that at daytime; (2) seasonal dependence of the response of foF2 to geomagnetic activity is very obvious. The negative ionospheric storm effect is the strongest in summer and the positive ionospheric storm effect is the strongest in winter; (3) the solar cycle has important effect on the response of foF2 to geomagnetic activity in Hainan. In high solar activity period, the diurnal variation of the response of foF2 is very pronounced in each season, and the strong ionospheric response can last several days. In low solar activity period, ionospheric response has very pronounced diurnal variation in winter only; (4) the local time of geomagnetic activities occurring also has important effect on the responses of foF2 in Hainan. Generally, geomagnetic activities occurred at nighttime can cause stronger and longer responses of foF2 in Hainan.  相似文献   
952.
During the summer of 1983 three Corps of Engineers project sites were overflown as part of the SPOT (Système Probatoire d'Observation de la Terre) High Resolution Visible (HRV) simulation campaign. The three sites were Chesapeake Bay, Maryland, Berlin Lake, Ohio, and Lac qui Parle, Minnesota. Multispectral imagery data at a 20-m resolution for three spectral bands (0.50–0.59 μm, 0.61–0.68 μm, 0.79–0.89 μm) were obtained for each of the sites. The data were analyzed for use in dredging, recreation resource management, water quality, and wildlife habitat applications.  相似文献   
953.
The FAA's Flight 2000 project is an innovative initiative to implement and validate selected operational improvements leading to Free Flight. It integrates new avionics, new ground systems, new procedures, avionics certification, and operational approval. Approximately 2000 aircraft operating in Alaska, Hawaii, and Oceanic airspace will be equipped with new capabilities enabling benefits such as improved situational awareness, increased flexibility, and efficiency gains. By developing and fielding these operational improvements, the actual benefits of new procedures and capabilities will be validated and risks associated with national implementation will be reduced  相似文献   
954.
This paper deals with the application of SeaWIFS images to characterize spatial and temporal variability of fronts in the Rio de la Plata estuarine system over the period 2000–2003. We aim to depict the relationship between river outflow and variability of fronts’ loci on monthly to ENSO-related timescales and the influence of the winds along Rio de la Plata (axial winds) on the abrupt changes in frontal dynamics over synoptic timescales. During the studied period both La Niña (July 1999–June 2000) and El Niño (April 2002–May 2003) events induced significant displacements of fronts. Three distinct fronts were analyzed between river, estuarine, coastal and marine waters of the Rio de la Plata: Main Turbidity Front, Main Marine Front, and Secondary Marine Front. Their number, location and separation seem to be mainly related to river outflow and second, to fresh (>8 m/s) axial winds. During low discharge periods (i.e. summer time and/or La Niña events) these winds induce abrupt changes in the location of fronts (100–200 km) and greater separation between them over synoptic timescale, whereas during high river discharge or ENSO years some of the variability of fronts location is explained by the river’s outflow fluctuations, especially by the high variability of the River Uruguay discharge.  相似文献   
955.
The Hubble space-based telescope is a great tribute to our progress in space. The ability to place an optical telescope at a significant distance from the Earth's surface, away from the interference of the planet's unsteady atmosphere, have already paid off by producing magnificent records of astronomical activities in the depths of outer space. In the past the problems with the alignment of the Hubble's optics were blamed on the manufacturers of it's optical components. The hastily set investigation concluded that the problem is a spherical aberration of the primary mirror (the primary mirror is said to be 2 microns too flat at the edges). It is suggested that the real culprit is the Parker Effect. Since the time of Galileo Galilei, all telescopes were built, aligned, and used on the Earth's surface. Hubble is the first telescope to be built and aligned on Earth for use in space. Because of this we have to consider the fundamental differences between the alignment of surface-based and space-based telescopes. For those who missed our article “The Parker Effect and Navigation in Space” published in the January issue. The Parker Effect describes the result of interaction between inertial bodies (anything that has mass) and non-inertial media (light or other E/M fields)  相似文献   
956.
957.
Estimates of drag characteristics of the space vehicles with orbit heights of 450–540 and 700–900 km before and after strong (with a magnitude M ≥ 6.5) crust earthquakes of 2000–2006 are presented. The method of estimation of seismic orbital effects is presented using as an example the small Mozhaets-4 spacecraft. Two weeks prior to earthquakes, variations in the drag of low-orbital spacecraft increase. 3–6 days prior to strong crust earthquakes with epicenters on the land, the drag of low-orbit spacecraft in the upper atmosphere increases. The effect of increased viscosity of the neutral component of the atmosphere at spacecraft heights 3–6 days prior to strong crust earthquakes is consistent with the results of studies of disturbances in the ionization density variations in the ionospheric F region prior to earthquakes. No anomalies are found in the day of the earthquake. In the future, it is proposed to use elements of space debris for diagnostics of seismic orbital effects and disturbances of the upper atmosphere.  相似文献   
958.
An elementary science education professional development partnership between Culver City Unified School District teachers and UCLA has been formed. The project was designed to assist teachers to comfortably present introductory space science concepts, to support them in their efforts, and to aid them in encouraging their students to develop inquiry skills related to space sciences. The project encourages teacher use of observational science techniques in their classrooms, the use of NASA solar mission images and enhanced use of astronomical observation to facilitate discovery learning. The integrated approach of the project has fostered collegial learning activities among the participating teachers and offered them opportunities for continued renewal and professional development of teacher competencies in astronomy and space science. The activities used in the classroom were developed by others, classroom tested, and specifically address National Science Education and California Science Content Standards. These activities have been sustained through on-going collaboration between the scientist and the teachers, a summer Research Experience for Teachers program, and on-going, grade-specific, district-sponsored workshops. Assessment of the value of the program is done by the school district and is used to continuously improve each workshop and program component. Culver City (California) Unified School District is a small urban school district located on the Westside of Los Angeles. This paper describes the program and the plans for incorporating IHY-themed science into the classroom.  相似文献   
959.
Based on a formerly developed ground-based prototype of space plant-growing facility, the development of its improved prototype has been finished, so as to make its operating principle better adapt to the space microgravity environment. According to the developing experience of its first generation prototype and detailed demonstration and design of technique plan, its blueprint design and machining of related components, whole facility installment, debugging and trial operations were all done gradually. Its growing chamber contains a volume of about 0.5 m3 and a growing area of approximate 0.5 m2; the atmospheric environmental parameters in the growing chamber and water content in the growing media were controlled totally and effectively; lighting source is a combination of both red and blue light emitting diodes (LED). The following demonstrating results showed that the entire system design of the prototype is reasonable and its operating principle can nearly meet the requirements of space microgravity environment. Therefore, our plant-growing technique in space was advanced further, which laid an important foundation for next development of the space plant-growing facility and plant-cultivating experimental research in space microgravity condition.  相似文献   
960.
Numerical modeling tools can be used for a number of reasons yielding many benefits in their application to planetary upper atmosphere and ionosphere environments. These tools are commonly used to predict upper atmosphere and ionosphere characteristics and to interpret measurements once they are obtained. Additional applications of these tools include conducting diagnostic balance studies, converting raw measurements into useful physical parameters, and comparing features and processes of different planetary atmospheres. This chapter focuses upon various classes of upper atmosphere and ionosphere numerical modeling tools, the equations solved and key assumptions made, specified inputs and tunable parameters, their common applications, and finally their notable strengths and weaknesses. Examples of these model classes and their specific applications to individual planetary environments will be described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号