首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9137篇
  免费   56篇
  国内免费   44篇
航空   4230篇
航天技术   3156篇
综合类   91篇
航天   1760篇
  2021年   96篇
  2019年   52篇
  2018年   176篇
  2017年   144篇
  2016年   123篇
  2015年   73篇
  2014年   218篇
  2013年   273篇
  2012年   256篇
  2011年   405篇
  2010年   299篇
  2009年   421篇
  2008年   480篇
  2007年   285篇
  2006年   231篇
  2005年   259篇
  2004年   228篇
  2003年   275篇
  2002年   205篇
  2001年   287篇
  2000年   191篇
  1999年   224篇
  1998年   250篇
  1997年   177篇
  1996年   216篇
  1995年   266篇
  1994年   262篇
  1993年   158篇
  1992年   198篇
  1991年   82篇
  1990年   77篇
  1989年   188篇
  1988年   85篇
  1987年   79篇
  1986年   81篇
  1985年   247篇
  1984年   191篇
  1983年   155篇
  1982年   154篇
  1981年   272篇
  1980年   70篇
  1979年   65篇
  1978年   75篇
  1977年   59篇
  1976年   48篇
  1975年   78篇
  1974年   55篇
  1972年   64篇
  1971年   59篇
  1970年   50篇
排序方式: 共有9237条查询结果,搜索用时 217 毫秒
211.
We present a preliminary version of a potential tool for real time proton flux prediction which provides proton flux profiles and cumulative fluence profiles at 0.5 and 2 MeV of solar energetic particle events, from their onset up to the arrival of the interplanetary shock at the spacecraft position (located at 1 or 0.4 AU). Based on the proton transportation model by Lario et al. [Lario, D., Sanahuja, B., Heras, A.M. Energetic particle events: efficiency of interplanetary shocks as 50 keV E < 100 MeV proton accelerators. Astrophys. J. 509, 415–434, 1998] and the magnetohydrodynamic shock propagation model of Wu et al. [Wu, S.T., Dryer, M., Han, S.M. Non-planar MHD model for solar flare-generated disturbances in the Heliospheric equatorial plane. Sol. Phys. 84, 395–418, 1983], we have generated a database containing “synthetic” profiles of the proton fluxes and cumulative fluences of 384 solar energetic particle events. We are currently validating the applicability of this code for space weather forecasting by comparing the resulting “synthetic” flux profiles with those of several real events.  相似文献   
212.
Recent developments regarding collisionless reconnection in current sheets with a finite normal magnetic field component (Bz) are reviewed. In 2-D x, z configurations the ion tearing mode is stabilized by the electron compressibility. When the y dependence is included, cross-field current instabilities can be excited. Of these, the drift kink mode appears to be particularly important. 3-D electromagnetic particle simulations indicate that this mode can act as the precursor to the growth of tearing modes and subsequent reconnection.  相似文献   
213.
From an investigation of the activity of six glucocorticoid dependent liver enzymes, the existence of chronic, transient, stress-induced hypercorticosteronaemia during flight is probable. This hypercorticosteronaemia arises from weightlessness and induces gluconeogenesis. Weightlessness also caused substantial increases in liver glycogen level. The increased lipolytic activity and that of lipoprotein lipase in several groups of animals could be interpreted as enhancement of fat mobilization and utilization under the influence of stress. As this latter enhancement was also found in ground-based controls, it may have been due to the stress of handling rather than to space flight per se.  相似文献   
214.
Changes in the vacuolation in root apex cells of soybean (Glycine max L. [Merr.]) seedlings grown in microgravity were investigated. Spaceflight and ground control seedlings were grown in the absence or presence of KMnO4 (to remove ethylene) for 6 days. After landing, in order to study of cell ultrastructure and subcellular free calcium ion distribution, seedling root apices were fixed in 2.5% (w/v) glutaraldehyde in 0.1 M cacodylate buffer and 2% (w/v) glutaraldehyde, 2.5% (w/v) formaldehyde, 2% (w/v) potassium antimonate K[Sb(OH)6] in 0.1 M K2HPO4 buffer with an osmolarity (calculated theoretically) of 0.45 and 1.26 osmol. The concentrations of ethylene in all spaceflight canisters were significantly higher than in the ground control canisters. Seedling growth was reduced in the spaceflight-exposed plants. Additionally, the spaceflight-exposed plants exhibited progressive vacuolation in the root apex cells, particularly in the columella cells, to a greater degree than the ground controls. Plasmolysis was observed in columella cells of spaceflight roots fixed in solutions with relatively high osmolarity (1.26 osmol). The appearance of plasmolysis permitted the evaluation of the water status of cells. The water potential of the spaceflight cells was higher than the surrounding fixative solution. A decrease in osmotic potential and/or an increase in turgor potential may have induced increases in cell water potential. However, the plasmolysed (i.e. non-turgid) cells implied that increases in water potential were accompanied with a decrease in osmotic potential. In such cells changes in vacuolation may have been involved to maintain turgor pressure or may have been a result of intensification of other vacuolar functions like digestion and storage.  相似文献   
215.
A wide variety of organisms (the so-called "anhydrobiotes') is able to survive long periods of time in a state of utmost dehydration and can thus survive in extremely dry environments including artificially imposed or space vacuum. Known strategies of survival include the accumulation of certain polyols, especially disaccharides, which help prevent damage to membranes and proteins. Here we report that DNA in vacuum-dried spores is damaged to a very substantial degree by processes leading to DNA strand breaks. Most of these lesions are obviously repaired during germination, but extensive damage to DNA and enzymes after long exposure times (months to years) finally diminish the chances of survival.  相似文献   
216.
Constructed in 1986, the Biosphere 2 Test Module has been used since the end of that year for closed ecological systems experiments. It is the largest closed ecological facility ever built, with a sealed variable volume of some 480 cubic meters. It is built with a skin of steel spaceframes with double-laminated glass panels admitting about 65 percent Photosynthetically Active Radiation (PAR). The floor is of welded steel and there is an underground atmospheric connection via an air duct to a variable volume chamber ("lung") permitting expansion and contraction of the Test Module's air volume caused by changes in temperature and barometric pressure, which causes a slight positive pressure from inside the closed system to the outside thereby insuring that the very small leakage rate is outward. Several series of closed ecological system investigations have been carried out in this facility. One series of experiments investigated the dynamics of higher plants and associated soils with the atmosphere under varying light and temperature conditions. Another series of experiments included one human in the closed system for three, five and twenty-one days. During these experiments the Test Module had subsystems which completely recycled its water and atmosphere; all the human dietary needs were produced within the facility, and all wastes were recycled using a marsh plant/microbe system. Other experiments have examined the capability of individual component systems used, such as the soil bed reactors, to eliminate experimentally introduced trace gases. Analytic systems developed for these experiments include continuous monitors of eleven atmospheric gases in addition to the complete gas chromatography mass spectrometry (GCMS) examinations of potable, waste system and irrigation water quality.  相似文献   
217.
218.
The Photopolarimeter/Radiometer (PPR) is a remote sensing instrument on the Galileo Orbiter designed to measure the degree of linear polarization and the intensity of reflected sunlight in ten spectral channels between 410 and 945 nm to determine the physical properties of Jovian clouds and aerosols, and to characterize the texture and microstructure of satellite surfaces. The PPR also measures thermal radiation in five spectral bands between 15 and 100 m to sense the upper tropospheric temperature structure. Two additional channels which measure spectrally integrated solar and solar plus thermal radiation are used to determine the planetary radiation budget components. The PPR photopolarimetric measurements utilize previously flown technology for high-precision polarimetry using a calcite Wollaston prism and two silicon photodiodes to enable simultaneous detection of the two orthogonal polarization components. The PPR radiometry measurements are made with a lithium tantalate pyroelectric detector utilizing a unique arrangement of radiometric stops and a scene/space chopper blade to enable a warm instrument to sense accurately the much colder scene temperatures.  相似文献   
219.
The plasma instrumentation (PLS) for the Galileo Mission comprises a nested set of four spherical-plate electrostatic analyzers and three miniature, magnetic mass spectrometers. The three-dimensional velocity distributions of positive ions and electrons, separately, are determined for the energy-per-unit charge (E/Q) range of 0.9 V to 52 kV. A large fraction of the 4-steradian solid angle for charged particle velocity vectors is sampled by means of the fan-shaped field-of-view of 160°, multiple sensors, and the rotation of the spacecraft spinning section. The fields-of-view of the three mass spectrometers are respectively directed perpendicular and nearly parallel and anti-parallel to the spin axis of the spacecraft. These mass spectrometers are used to identify the composition of the positive ion plasmas, e.g., H+, O+, Na+, and S+, in the Jovian magnetosphere. The energy range of these three mass spectrometers is dependent upon the species. The maximum temporal resolutions of the instrument for determining the energy (E/Q) spectra of charged particles and mass (M/Q) composition of positive ion plasmas are 0.5 s. Three-dimensional velocity distributions of electrons and positive ions require a minimum sampling time of 20 s, which is slightly longer than the spacecraft rotation period. The two instrument microprocessors provide the capability of inflight implementation of operational modes by ground-command that are tailored for specific plasma regimes, e.g., magnetosheath, plasma sheet, cold and hot tori, and satellite wakes, and that can be improved upon as acquired knowledge increases during the tour of the Jovian magnetosphere. Because the instrument is specifically designed for measurements in the environs of Jupiter with the advantages of previous surveys with the Voyager spacecraft, first determinations of many plasma phenomena can be expected. These observational objectives include field-aligned currents, three-dimensional ion bulk flows, pickup ions from the Galilean satellites, the spatial distribution of plasmas throughout most of the magnetosphere and including the magnetotail, and ion and electron flows to and from the Jovian ionosphere.  相似文献   
220.
The Lightning and Radio Emission Detector (LRD) instrument will be carried by the Galileo Probe into Jupiter's atmosphere. The LRD will verify the existence of lightning in the atmosphere and will determine the details of many of its basic characteristics. The instrument, operated in its magnetospheric mode at distances of about 5, 4, 3, and 2 planetary radii from Jupiter's center, will also measure the radio frequency (RF) noise spectrum in Jupiter's magnetosphere. The LRD instrument is composed of a ferritecore radio frequency antenna ( 100 Hz to 100 kHz) and two photodiodes mounted behind individual fisheye lenses. The output of the RF antenna is analyzed both separately and in coincidence with the optical signals from the photodiodes. The RF antenna provides data both in the frequency domain (with three narrow-band channels, primarily for deducing the physical properties of distant lightning) and in the time domain with a priority scheme (primarily for determining from individual RF waveforms the physical properties of closeby-lightning).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号