全文获取类型
收费全文 | 10276篇 |
免费 | 21篇 |
国内免费 | 32篇 |
专业分类
航空 | 4916篇 |
航天技术 | 3527篇 |
综合类 | 42篇 |
航天 | 1844篇 |
出版年
2021年 | 89篇 |
2019年 | 64篇 |
2018年 | 189篇 |
2017年 | 118篇 |
2016年 | 121篇 |
2015年 | 60篇 |
2014年 | 222篇 |
2013年 | 298篇 |
2012年 | 278篇 |
2011年 | 407篇 |
2010年 | 292篇 |
2009年 | 432篇 |
2008年 | 496篇 |
2007年 | 296篇 |
2006年 | 246篇 |
2005年 | 270篇 |
2004年 | 241篇 |
2003年 | 312篇 |
2002年 | 205篇 |
2001年 | 337篇 |
2000年 | 196篇 |
1999年 | 243篇 |
1998年 | 283篇 |
1997年 | 194篇 |
1996年 | 278篇 |
1995年 | 331篇 |
1994年 | 308篇 |
1993年 | 192篇 |
1992年 | 231篇 |
1991年 | 102篇 |
1990年 | 97篇 |
1989年 | 224篇 |
1988年 | 102篇 |
1987年 | 109篇 |
1986年 | 103篇 |
1985年 | 303篇 |
1984年 | 241篇 |
1983年 | 198篇 |
1982年 | 209篇 |
1981年 | 330篇 |
1980年 | 97篇 |
1979年 | 75篇 |
1978年 | 84篇 |
1977年 | 74篇 |
1975年 | 93篇 |
1974年 | 70篇 |
1973年 | 64篇 |
1972年 | 75篇 |
1971年 | 67篇 |
1970年 | 68篇 |
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
581.
582.
A.B. Waye R.G. Krygiel T.B. Susin R. Baptista L. Rehnberg G.S. Heidner F. de Campos F.P. Falcão T. Russomano 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Performance of efficient single-person cardiopulmonary resuscitation (CPR) is vital to maintain cardiac and cerebral perfusion during the 2–4 min it takes for deployment of advanced life support during a space mission. The aim of the present study was to investigate potential differences in upper body muscle activity during CPR performance at terrestrial gravity (+1Gz) and in simulated microgravity (μG). Muscle activity of the triceps brachii, erector spinae, rectus abdominis and pectoralis major was measured via superficial electromyography in 20 healthy male volunteers. Four sets of 30 external chest compressions (ECCs) were performed on a mannequin. Microgravity was simulated using a body suspension device and harness; the Evetts–Russomano (ER) method was adopted for CPR performance in simulated microgravity. Heart rate and perceived exertion via Borg scores were also measured. While a significantly lower depth of ECCs was observed in simulated microgravity, compared with +1Gz, it was still within the target range of 40–50 mm. There was a 7.7% decrease of the mean (±SEM) ECC depth from 48 ± 0.3 mm at +1Gz, to 44.3 ± 0.5 mm during microgravity simulation (p < 0.001). No significant difference in number or rate of compressions was found between the two conditions. Heart rate displayed a significantly larger increase during CPR in simulated microgravity than at +1Gz, the former presenting a mean (±SEM) of 23.6 ± 2.91 bpm and the latter, 76.6 ± 3.8 bpm (p < 0.001). Borg scores were 70% higher post-microgravity compressions (17 ± 1) than post +1Gz compressions (10 ± 1) (p < 0.001). Intermuscular comparisons showed the triceps brachii to have significantly lower muscle activity than each of the other three tested muscles, in both +1Gz and microgravity. As shown by greater Borg scores and heart rate increases, CPR performance in simulated microgravity is more fatiguing than at +1Gz. Nevertheless, no significant difference in muscle activity between conditions was found, a result that is favourable for astronauts, given the inevitable muscular and cardiovascular deconditioning that occurs during space travel. 相似文献
583.
Prateek R. Srivastava Sneha A. Gokani Ajeet K. Maurya Rajesh Singh Sushil Kumar B. Veenadhari R. Selvakumaran Abhay K. Singh Devendraa Siingh Janos Lichtenberger 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
One-to-one relation with its causative lightning discharges and propagation features of night-time whistlers recorded at low-latitude station, Allahabad (geomag. lat. 16.05°N, L = 1.08), India, from continuous observations made during 1–7 April, 2011 have been studied. The whistler observations were made using the Automatic Whistler Detector (AWD) system and AWESOME VLF receiver. The causative lightning strikes of whistlers were checked in data provided by World-Wide Lightning Location Network (WWLLN). A total of 32 whistlers were observed out of which 23 were correlated with their causative lightnings in and around the conjugate location (geom. lat. 9.87°S) of Allahabad. A multi-flash whistler is also observed on 1 April with dispersions 15.3, 17.5 and 13.6 s1/2. About 70% (23 out of 32) whistlers were correlated with the WWLLN detected causative lightnings in the conjugate region which supports the ducted mode of propagation at low latitude. The multi-flash and short whistlers also propagated most likely in the ducted mode to this station. 相似文献
584.
F. Vigier A. Le Postollec G. Coussot D. Chaput H. Cottin T. Berger S. Incerti S. Triqueneaux M. Dobrijevic O. Vandenabeele-Trambouze 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Biochips might be suited for planetary exploration. Indeed, they present great potential for the search for biomarkers – molecules that are the sign of past or present life in space – thanks to their size (miniaturized devices) and sensitivity. Their detection principle is based on the recognition of a target molecule by affinity receptors fixed on a solid surface. Consequently, one of the main concerns when developing such a system is the behavior of the biological receptors in a space environment. In this paper, we describe the preparation of an experiment planned to be part of the EXPOSE-R2 mission, which will be conducted on the EXPOSE-R facility, outside the International Space Station (ISS), in order to study the resistance of biochip models to space constraints (especially cosmic radiation and thermal cycling). This experiment overcomes the limits of ground tests which do not reproduce exactly the space parameters. Indeed, contrary to ground experiments where constraints are applied individually and in a limited time, the biochip models on the ISS will be exposed to cumulated constraints during several months. Finally, this ISS experiment is a necessary step towards planetary exploration as it will help assessing whether a biochip can be used for future exploration missions. 相似文献
585.
H. Fuke Y. Tasaki K. Abe S. Haino Y. Makida S. Matsuda J.W. Mitchell A.A. Moiseev J. Nishimura M. Nozaki S. Orito J.F. Ormes M. Sasaki E.S. Seo Y. Shikaze R.E. Streitmatter J. Suzuki K. Tanaka T. Yamagami A. Yamamoto T. Yoshida K. Yoshimura 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(12):2050-2055
586.
S. Valk A. Lemaître 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,42(8):1429-1443
This paper investigates the long-term perturbations of the orbits of geosynchronous space debris influenced by direct radiation pressure including the Earth’s shadowing effects. For this purpose, we propose an extension of our homemade semi-analytical theory [Valk, S., Lemaître, A., Deleflie, F. Semi-analytical theory of mean orbital motion for geosynchronous space debris under gravitational influence. Adv. Space Res., submitted for publication], based on the method developed by Aksnes [Aksnes, K. Short-period and long-period perturbations of a spherical satellite due to direct solar radiation. Celest. Mech. Dyn. Astron. 13, 89–104, 1976] and generalized into a more convenient non-singular formalism. The perturbations accounting for the direct radiation pressure with the Earth’s shadow are computed on a revolution-by-revolution basis, retaining the original osculating Hamiltonian disturbing function. In this framework, we compute the non-singular mean longitude at shadow entry and shadow exit at every orbital revolution in opposition to classical approaches where the singular eccentric anomalies at shadow entry and shadow exit are computed. This new algorithm is developed using non-singular variables. Consequently, it is particularly suitable for both near-circular and near-equatorial orbits as well as orbits which transit periodically around null eccentricities and null inclinations.The algorithm is tested by means of numerical integrations of the equations, averaged over the short periods, including radiation pressure, J2, the combined Moon and Sun third body attraction as well as the long-term effects of the 1:1 resonance occurring for geosynchronous objects. As an extension of [Valk, S., Lemaître, A., Anselmo, L. Analytical and semi-analytical investigations of geosynchronous space debris with high area-to-mass ratios influenced by solar radiation pressure. Adv. Space Res., doi:10.1016/j.asr.2007.10.025, 2007b], we especially apply our analysis to space debris with area-to-mass as high as 20 m2/kg. This paper provides numerical and semi-analytical investigations leading to a deep understanding of the long-term evolution of the semi-major axis. Finally, these semi-analytical investigations are compared with accurate numerical integrations of the osculating equations of motion over time scales as high as 25 years. 相似文献
587.
R.A. Windhorst N.P. Hathi S.H. Cohen R.A. Jansen D. Kawata S.P. Driver B. Gibson 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(12):1965-1971
We summarize the high-resolution science that has been done on high redshift galaxies with Adaptive Optics (AO) on the world’s largest ground-based facilities and with the Hubble Space Telescope (HST). These facilities complement each other. Ground-based AO provides better light gathering power and in principle better resolution than HST, giving it the edge in high spatial resolution imaging and high resolution spectroscopy. HST produces higher quality, more stable PSF’s over larger field-of-views in a much darker sky-background than ground-based AO, and yields deeper wide-field images and low-resolution spectra than the ground. Faint galaxies have steadily decreasing sizes at fainter fluxes and higher redshifts, reflecting the hierarchical formation of galaxies over cosmic time. HST has imaged this process in great structural detail to z 6, and ground-based AO and spectroscopy has provided measurements of their masses and other physical properties with cosmic time. Last, we review how the 6.5 m James Webb Space Telescope (JWST) will measure First Light, reionization, and galaxy assembly in the near–mid-IR after 2013. 相似文献
588.
589.
T.A. Borisova N.V. Krisanova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
High-affinity Na+-dependent glutamate transporters of the plasma membrane mediate the glutamate uptake into neurons, and thus maintain low levels of extracellular glutamate in the synaptic cleft. The study focused on the release of glutamate by reversal of Na+-dependent glutamate transporters from rat brain nerve terminals (synaptosomes) under conditions of centrifuge-induced hypergravity. Flow cytometric analysis revealed similarity in the size and cytoplasmic granularity between synaptosomal preparations obtained from control and G-loaded animals (10 G, 1 h). The release of cytosolic l-[14C]glutamate from synaptosomes was evaluated using the protonophore FCCP, which dissipated synaptic vesicle proton gradient, thus synaptic vesicles were not able to keep glutamate inside and the latter enriched cytosol. FCCP per se induced the greater release of l-[14C]glutamate in hypergravity as compared to control (4.8 ± 1.0% and 8.0 ± 1.0% of total label). Exocytotic release of l-[14C]glutamate evoked by depolarization was reduced down to zero after FCCP application under both conditions studied. Depolarization stimulated release of cytosolic l-[14C]glutamate from synaptosomes preliminary treated with FCCP was considerably increased from 27.0 ± 2.2% of total label in control to 35.0 ± 2.3% in hypergravity. Non-transportable inhibitor of glutamate transporter dl-threo-β-benzyloxyaspartate was found to significantly inhibit high-KCl and FCCP-stimulated release of l-[14C]glutamate, confirming the release by reversal of glutamate transporters. The enhancement of transporter-mediated release of glutamate in hypergravity was found to result at least partially from the inhibition of the activity of Na/K-ATPase in the plasma membrane of synaptosomes. We suggested that hypergravity-induced alteration in transporter-mediated release of glutamate indicated hypoxic injury of neurons. 相似文献
590.
M. Poje B. Vuković M. Varga V. Radolić I. Miklavčić D. Faj J. Planinić 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
Cosmic radiation bombards us at high altitude with ionizing particles; the radiation has a galactic component, which is normally dominant, and a component of solar origin. Cosmic ray particles are the primary source of ionization in the atmosphere above 1 km; below 1 km radon is a dominant source of ionization in many areas. 相似文献