首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   17篇
  国内免费   1篇
航空   35篇
航天技术   17篇
综合类   6篇
航天   21篇
  2024年   1篇
  2023年   6篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   8篇
  2018年   4篇
  2017年   3篇
  2016年   1篇
  2015年   8篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2007年   3篇
  2006年   2篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   4篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
61.
为快速确定反动度的合理取值范围,加快涡轮设计流程及完善气动设计体系,对考虑动叶进口相对总温的高压涡轮反动度可行域及多约束下反动度的可行域进行研究。采用"等效单级涡轮"的思路建立反动度与动叶进口无量纲相对总温之间的关系式以及采用速度三角形方法建立多约束条件下反动度可行域的计算方法。研究显示:当级负荷系数和膨胀比一定时,相对总温随反动度降低而降低。反动度降低0.1,则无量纲相对总温降低0.012。涡轮进口总温越高,反动度对相对总温影响幅度越大。当级负荷系数大于某值或膨胀比低于某值时,反动度均存在最大值。为保证气动方案具有较低值动叶进口相对总温和较高的效率,若膨胀比一定时,应选择较小的反动度和级负荷系数的设计思路,若级负荷系数一定时,对于单级涡轮反动度取值应较高,对于双级涡轮反动度取值应减小。建立考虑涡轮气动、传热、强度、结构方面的多约束可行域计算方法,可以快速确定反动度的可行域,完善涡轮气动方案设计并加快设计流程。以新型高速飞行器低压涡轮为分析对象,采用该方法确定其反动度可行域为0.125~0.266,并深入研究发现其反动度最大值由动叶出口最大允许马赫数和最小允许绝对气流角共同限制。  相似文献   
62.
崔涛  王松涛  汪帅  温风波  王仲奇 《推进技术》2019,40(8):1767-1779
为了探究CST (形状函数变换技术)造型方法在涡轮叶片前缘修型中的应用效果,完善了CST方法在前缘型线重构中的实施细节,数值模拟了雷诺数对前缘修型前后叶型损失及边界层特性的影响,验证了CST前缘修型方法在新型高速飞行器低压涡轮中的实用性。结果显示:CST方法前缘修型可以消除HD叶型吸力侧前缘的压力峰和分离泡,从而使得高雷诺数条件下吸力侧分离诱导的边界层转捩现象延迟发生,叶型损失降低32%,拓展了低损失状态的雷诺数范围。吸力侧损失的降低在低雷诺数条件下主要来自于前缘附近的剪切层,而高雷诺数条件下主要来自于前缘剪切层和扩压段前的层流边界层。新型高速空天飞行器低压涡轮叶片采用CST前缘修型对提升效率是有效的,在设计点状态附近效率提高0.1%,而膨胀比较低的大负攻角状态下效率提升0.3%~0.5%,损失降低的位置主要集中在叶展中部压力侧边界层和根部的二次流区域。  相似文献   
63.
随着遥感技术的快速发展,光学遥感影像弱小目标智能解译成为遥感信息处理的研究热点之一。遥感影像的地物目标常具有尺度小、种类多、数量大、部分重点小目标移动速度快的特点,易受到复杂背景环境及噪声影响,使得提取遥感影像弱小目标的信息面临着巨大的挑战。早期智能解译算法中的弱小目标分割、检测及跟踪等算法研究,多依赖模板匹配及先验知识,此类算法需耗费大量资源、算力及专家知识成本,存在着计算量大、泛化能力差的问题。近年来,随着深度学习等人工智能技术的快速发展,在海量遥感数据中准确获取弱小目标的信息,通过结合深度学习算法可对弱小目标的特征进行快速提取,以提供高效、准确的解译信息。本文综述了遥感影像弱小目标智能解译算法研究进展,包括基于传统图像处理方法的弱小目标分割、检测和跟踪算法,以及基于深度学习等典型相关算法。通过分析这些方法的优点与局限性,对于提高相关目标的信息获取能力、提升观测的态势感知水平以及未来应用等方面具有重要意义。  相似文献   
64.
硅氧氮陶瓷的先驱体法合成及性能的研究   总被引:3,自引:2,他引:3  
用 Si Cl4为原料 ,通过水解和氨解的方法 ,制备了不同含氮量的硅氧氮先驱体。先驱体通过脱氨基原位聚合 ,再经过无机化转变成为成分均匀的硅氧氮粉体 ,用所得粉体热压烧结制备了硅氧氮材料。测试分析结果表明 ,氮的引入使氧化硅的析晶温度提高了 1 5 0℃ ;适量析晶显著提高材料的力学性能 ;烧结温度为 1 4 0 0℃时 ,氮的质量分数为 2 4 .3%材料的强度和韧性最大 ,分别达到 1 5 6 MPa和 1 .8MPa· m1 / 2 ,比 Si O2 基体的强度和韧性提高了 4 .5 8倍和 2 .2 5倍。  相似文献   
65.
设计以翘曲S1流面优化为核心的多级涡轮气动优化流程,研究气膜冷气、尾缘冷气、端壁冷气对优化可靠性和有效性的影响。该流程能够对多种叶高处带叶片冷气的多级翘曲S1流面进行并行优化,提高了优化的可靠性。对两级高压涡轮给定三种叶片冷气方案:包括气膜冷气和尾缘冷气的叶身冷气、气膜冷气、无叶片冷气,分别进行翘曲S1流面优化设计。优化后翘曲S1流面平均气动效率分别提高0.20%、0.38%、0.07%,涡轮气动效率分别提高0.33%、0.32%、0.26%,优化的可靠性较好。分析可知,气膜冷气增强了径向二次流动,降低了优化的有效性,尾缘冷气则部分削弱了气膜冷气的消极作用;下端壁冷气较上端壁冷气对端区二次流的作用强,因此前者对翘曲S1流面优化的积极作用更好。  相似文献   
66.
罗磊  王松涛  迟重然  温风波  卢少鹏  刘轶 《推进技术》2013,34(11):1520-1529
为了设计适用于涡轴发动机涡轮动叶的冷却结构,将一套涡轮传热设计流程应用于动叶冷却结构设计中,设计后对管网计算不能准确模拟叶顶出流提出改进措施。结果表明:管网计算与全三维气热耦合计算流量差异约为8.8%,平均温度差异约10.1%,管网计算具有方案设计的功能,管网计算温度场与三维温度场计算平均温度差异约为7.6%,三维温度场计算具有作为管网计算后续温度场细致分析的功能;采用该设计流程能够有效减少冷却结构设计的盲目性,使冷却结构设计更加灵活方便;改进管网计算边界添加方式后叶顶未发生燃气倒灌,叶顶第一除尘孔冷气量为0.715g/s,第二除尘孔冷气量为0.139g/s,尾缘劈缝总流量为1.935g/s,通过改进边界添加方式能够增加管网计算精度。   相似文献   
67.
对失效卫星等非合作慢旋目标进行在轨服务,需要精确测量追踪航天器与目标之间的姿态信息。因此,如何在复杂的光照条件下快速、准确地对非合作慢旋目标进行即时状态位姿确定具有一定的挑战性。应用ORB-SLAM技术,首先定位关键帧,并估计姿态。然后用当前帧的特征点与地图点对应的特征点进行匹配。最后,将完成匹配的特征点通过重投影确定其在地图中的位置,如果出现跟踪丢失,则根据已有的地图点估计姿态。实验结果表明:在复杂的光照条件下,分别对以10(°)/s角速度运动和以3(°)/s角速度运动的非合作目标进行测量,当测量稳定后,平均角速度误差约为0.1(°)/s和0.02(°)/s,可以满足工程上空间非合作目标相对姿态测量的精度要求。  相似文献   
68.
底特律国家足球竞赛联盟的足球爱好者不用再担心比赛天气的好坏了。宏伟而新型的庞蒂亚克体育场是一个被空气支承、并能透过阳光的纤维织品圆顶建筑。这一建筑物既能保护球赛场地,又能使观众免受风雨的影响。有八万坐位的“锡尔弗圆顶建筑”是世界上最大的纤维织品圆顶结构建筑物,而宇航技术在它的建造中起了重要的作用。这种材料起源于1967年,当时美航宇局正为阿波罗宇航员的宇宙服寻求新的纤维织品。这种织品必须既耐穿又不易燃,既轻便又柔软。俄亥俄州的欧文斯-科宁纤维玻  相似文献   
69.
日前,从某杂志上看到这样一篇文章,关在动物园里的小骆驼问妈妈:“为什么我们的睫毛那么地长?”骆驼妈妈说:“当风沙来的时候,长长的睫毛可以让我们在风暴中部能看得到方向。”小骆驼又问:“为什么我们的背那么驼,丑死了!”骆驼妈妈说:“这个叫驼峰,可以帮我们储存大量的水和养分,让我们能在沙漠里耐受十几天的无水无食条件。”小骆驼高兴坏了:“哇,原来我们这么有用啊!可是妈妈,为什么我们还在动物园里,不去沙漠远足呢?”  相似文献   
70.
金岩  王玲  杨孝宗  温东新 《宇航学报》2007,28(5):1086-1093
随着无线网络技术的发展,无线传感器网络近年来引起了广泛的关注。该网络由大量具有有限感知能力和传输能力的节点组成。受节点自身能量的制约,如何能源有效的利用节点使得尽可能的延长网络工作时间成为了无线传感器网络设计的重中之重。针对无线传感器网络设计能源有效的节点调度算法可以完成这一目标。本文从技术角度给出了研究节点调度算法的意义,对现有的节点调度算法进行了分类、分析和比较。最后给出未来需要解决的若干个问题,相信会推动该领域的工作人员展开进一步的探索和研究。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号