首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   2篇
  国内免费   3篇
航空   35篇
航天技术   30篇
航天   5篇
  2023年   1篇
  2020年   1篇
  2018年   3篇
  2017年   5篇
  2016年   1篇
  2012年   15篇
  2011年   10篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2000年   1篇
  1997年   3篇
  1996年   5篇
  1994年   3篇
  1992年   7篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   4篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
21.
A ring-like mass exerts a well computable gravitational attraction on a material point located along a straight line, being perpendicular to the plane of the ring in its centre. In the state of weightlessness, an oscillatory movement will develop owing to this effect. The period, T, of oscillation depends on the gravity constant, on the density and dimensions of the ring, as well as on the amplitude of the oscillation. Its exact computation can be based on the determination of the gravity potential function of the ring. The oscillation has the following form:
T=1√f√.I(r,R,z)
where f is the gravitational constant.
is the density of the ring, r and R are the radii of the ring, z is the distance of the turning point of the oscillation from the centre of the ring, while I/r,R,z/ is an improper integral which can be computed with any desired accuracy owing to the favourable function-theoretical character of the potential. We computed the oscillation period for various possible values of the parameters and obtained time data of an order of magnitude which falls into a well observable interval.The outlined conceptual experiment for the improved determination of the gravitational constant may present, of course, many technical difficulties and error sources /e.g. the path of the oscillating point is quite unstable owing to the extremely small acting forces, electric charges and also radiation pressure might be present, the gravity field would show a gradient on the spot of the experiment, etc./. Nevertheless, it seems to be worthwhile to consider carrying out such an experiment, using the possibilities offered by modern techniques in observing distances and time. For the path distortions caused by errors, we give a few estimates, but in case of realization of the experiment, a more detailed error analysis must be made.  相似文献   
22.
Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700–718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.  相似文献   
23.
A microcomputer-based system for non-invasive monitoring of cardiovascular system in simulated microgravity is described. The system evaluates automatically, accurately and interactively heart beat intervals, beat-to-beat non-invasive finger arterial blood pressure (systolic, diastolic, mean and pulse pressure) using a Finapres device and beat-to-beat changes of thoracic blood volume using impedance changes. In addition, beat-to-beat evaluation of cardiac mechanical function including left ventricular ejection time, diastolic time, systolic time intervals, left ventricular ejection fraction estimate and several other contractility parameters, left ventricular volume, stroke volume and cardiac output estimates are performed with high degree of automaticity.  相似文献   
24.
We discuss the recent progress in studying the absolute and convective instabilities of circularly polarized Alfvén waves (pump waves) propagating along an ambient magnetic field in the approximation of ideal magnetohydrodynamics (MHD). We present analytical results obtained for pump waves with small dimensionless amplitude a, and compare them with numerical results valid for arbitrary a. The type of instability, absolute or convective, depends on the velocity U of the reference frame where the pump wave is observed with respect to the rest plasma. One of the main results of our analysis is that the instability is absolute when U l < U < U r and convective otherwise. We study the dependences of U l and U r on a and the ratio of the sound speed to the Alfvén speed b. We also present the results of calculation of the increment of the absolute instability on U for different values of a and b. When the instability is convective (U < U l or U > U r) we consider the signalling problem, and show that spatially amplifying waves exist only when the signalling frequency is in two symmetric frequency bands. Then, we write down the analytical expressions determining the boundaries of these frequency bands and discuss how they agree with numerically calculated values. We also present the dependences of the maximum spatial amplification rate on U calculated both analytically and numerically. The implication of the obtained results on the interpretation of observational data from space missions is discussed. In particular, it is shown that circularly polarized Alfvén waves propagating in the solar wind are convectively unstable in a reference frame of any realistic spacecraft.  相似文献   
25.
26.
The Earth’s bow shock is the most studied example of a collisionless shock in the solar system. It is also widely used to model or predict the behaviour at other astrophysical shock systems. Spacecraft observations, theoretical modelling and numerical simulations have led to a detailed understanding of the bow shock structure, the spatial organization of the components making up the shock interaction system, as well as fundamental shock processes such as particle heating and acceleration. In this paper we review the observations of accelerated ions at and upstream of the terrestrial bow shock and discuss the models and theories used to explain them. We describe the global morphology of the quasi-perpendicular and quasi-parallel shock regions and the foreshock. The acceleration processes for field-aligned beams and diffuse ion distribution types are discussed with connection to foreshock morphology and shock structure. The different possible mechanisms for extracting solar wind ions into the acceleration processes are also described. Despite several decades of study, there still remain some unsolved problems concerning ion acceleration at the bow shock, and we summarize these challenges.  相似文献   
27.
The variable pressure growth chamber (VPGC) was used in a 34-day functional test to grow a wheat crop using reduced pressure (70 kPa) episodes totalling 131 hours. Primary goals of the test were to verify facility and subsystem performance at 70 kPa and to determine responses of a wheat stand to reduced pressure and modified partial pressures of carbon dioxide and oxygen. Operation and maintenance of the chamber at 70 kpa involved continuous evacuation of the chamber atmosphere, leading to CO2 influx and efflux. A model for calculating CO2-exchange rates (net photosynthesis and dark respiration) was developed and tested and involved measurements of chamber leakage to determine appropriate corrections. Measurement of chamber leakage was based on the rate of pressure change over a small pressure increment (70.3 to 72.3 kPa) with the pump disabled. Leakage values were used to correct decreases and increases in chamber CO2 concentration resulting from net photosynthesis (Ps) and dark respiration (DR), respectively. Composite leakage corrections (influx and efflux) at day 7 of the test were 9% and 19% of the changes measured for Ps and DR, respectively. On day 33, composite corrections were only 3% for Ps and 4% for DR. During the test, the chamber became progressively tighter; the leak rate at 70.3 kPa decreasing from 2.36 chamber volumes/day pretest, to 1.71 volumes/day at the beginning of the test, and 1.16 volumes/day at the end of the test. Verification of the short-term leakage tests (rate of pressure rise) were made by testing CO2 leakage with the vacuum pump enabled and disabled. Results demonstrate the suitability of the VPGC or conducting gas exhange measurements of a crop stand at reduced pressure.  相似文献   
28.
Cichlid fish larvae were reared from hatching to active free swimming under different gravity conditions: natural environment, increased acceleration in a centrifuge, simulated weightlessness in a clinostat and near weightlessness during space flight. Cytochrome oxidase activity was analyzed semiquantitatively on the ultrastructural level as a marker of regional neuronal activity in a primary, vestibular brainstem nucleus and in gravity receptive epithelia in the inner ear. Our results show, that gravity seems to be positively correlated with cytochrome oxidase activity in the magnocellular nucleus of developing fish brain. In the inner ear the energy metabolism is decreased under microgravity concerning utricle but not saccule. Hypergravity has no effect on cytochrome oxidase activity in sensory inner ear epithelia.  相似文献   
29.
DNA damage induced by heavy ions in bacterial cells and bacteriophages such as Bacillus subtilis, E. coli and Bacteriophage T1 were investigated by analyzing the double strand breaks in the chromosomal DNA. This kind of lesion is considered as one of the main reasons for lethal events. To analyze double strand breaks in long molecules of DNA--up to some Mbp in length--the technique of pulse field agarose gel electrophoresis has been used. This allows the detection of one double strand break per genome. Cell lysis and DNA isolation were performed in small agarose blocks directly. This procedure secured minimum DNA destruction by shearing forces. After running a gel, the DNA was stained with ethidium bromide. The light intensity of ethidium bromide fluorescence for both the outcoming (running) DNA and the remaining intact DNA were measured by scanning. The mean number of double strand breaks was calculated by determining the quotient of these intensities. Strand break induction after heavy ion and X-ray irradiation was compared.  相似文献   
30.
Satellite observations near the magnetopause and within the magnetosheath revealed the existence of some structures characterised by specific magnetic field and plasma signatures. They have been called “Flux Transfer Events”. One of the models of FTEs is a reconnected fluxtube, extending from the inner magnetosphere into the magnetosheath. ELF-ULF waves are often observed in together with other FTE's signatures. Wideband emissions are associated with the boundaries of FTEs with characteristic maxima at lower hybrid and ion-cyclotron frequencies. They provide a tool for better timing of the events. These emissions might also be related to the reconnection process. Observations of FTE's by Prognoz-8 satellite are presented in our paper. Wave signatures of the FTEs are described. Various mechanisms of generation of the emissions by instabilities depending on local plasma conditions are discussed along with non-local aspects of such waves. Numerical solutions of the dispersion equation for the typical conditions in FTEs are presented. Possible relation of these waves to the reconnection process are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号