首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
航空   1篇
航天技术   5篇
  2019年   1篇
  2018年   1篇
  2009年   3篇
  1990年   1篇
排序方式: 共有6条查询结果,搜索用时 62 毫秒
1
1.
2.
欧阳万 《航空学报》1990,11(8):375-378
 <正> 1.引言 随着自动加载与自补偿型静校系统在我国研制成功并投入使用,对静校设备的研制已引起国内各风洞实验室的重视。特别是大型风洞投入使用和进一步开发建设,将促使对天平静校系统的研究。静校系统的改进是提高风洞实验水平的必要条件。但静校系统及其子系统的技术指标在已有的文献中很难找到。探讨此问题显然对新系统的设计和已有系统的分析具有重要意义。  相似文献   
3.
To analyze midlatitude medium-scale travelling ionospheric disturbances (MSTIDs) over Kazan (55.5°N, 49°E), Russia, the sufficiently dense network of GNSS receivers (more than 150 ground-based stations) were used. For the first time, daytime MSTIDs in the form of their main signature (band structure) on high-resolution two-dimensional maps of the total electron content perturbation (TEC maps) are compared with ionosonde data with a high temporal resolution. For a pair of events, a relationship between southwestward TEC perturbations and evolution of F2 layer traces was established. So F2 peak frequency varied in antiphase to TEC perturbations. The ionograms show that during the movement of plasma depletion band (overhead ionosonde) the F2 peak frequency is the highest, and vice versa, for the plasma enhancement band, the F2 peak frequency is the lowest. One possible explanation may be a greater inclination of the radio beam from the vertical during the placement of a plasma enhancement band above the ionosonde, as evidenced by the absence of multiple reflections and the increased occurrence rate of additional cusp trace. Another possible explanation may be the redistribution of the electron content in the topside ionosphere with a small decrease in the F peak concentration of the layer with a small increase in TEC along the line-of-sight. Analysis of F2 peak frequency variation shows that observed peak-to-peak values of TEC perturbation equal to 0.4 and 1 TECU correspond to the values of ΔN/N equal to 13% and 28%. The need for further research is evident.  相似文献   
4.
New meteor radar (MR) horizontal wind data obtained during 2015–2018 at Kazan (56°N, 49°E) are presented. The measurements were carried out with a state-of-the-art SKiYMET meteor radar. Monthly mean vertical profiles of zonal and meridional components of the prevailing wind speeds, also amplitudes and phases of the components of diurnal (DT) and semidiurnal tide (SDT) winds are displayed as contour plots for a mean calendar year over the four recent years and compared with distributions of these parameters provided by the previous multiyear (1986–2002) meteor radar (MR) measurements at Kazan and by the recent HWM07 empirical model. The analysis shows that the SKiYMET zonal and meridional prevailing wind speeds are generally in good agreement, sharing the same seasonal features, with the earlier MR seasonal winds. Comparisons with the HWM07 model are not favourable: eastward solstitial cells as modelled are significantly larger, >30?m/s compared to 15–20?m/s. Also, reversal lines are too variable with height, and the positions of modelled cells (positive and negative) are unlike those of either MRs at Kazan or other MLT radars. Both MR systems provide the large SDT amplitudes, approximately 30?m/s and vertical wavelengths, approximately 55?km, for both components at middle latitudes in winter. They also show the well known strong SDT September feature (heights 85–100?km, the vertical wavelength ~55–60?km), and the weak summer SDT for 80–91?km. HWM07 shows unrealistic amplitudes and phases above 90?km by height and month: minimal amplitudes in equinoxes and no September feature.The weak DT of middle to high latitudes provide similar amplitude and phase structures from both MRs, 1986–2002 and 2015–2017: largest amplitudes (10–12 or 8–10?m/s) for the evanescent meridional tide in summer, peaking in late July; weakest (0–2, 2–4?m/s) at 80 to 92–96?km, when the tide is vertically propagating (January, February, November, December) with a vertical wavelength near 40?km. Again, HWM07 differs in amplitude and phase structures: showing peak amplitudes in equinoxes: April, 15?m/s at 88?km; October, 21?m/s at 89?km.Coupling of the MR wind parameters with the ERA5 wind parameters is studied for a case in 2016. It is shown that the prevailing winds and DT amplitudes and phases of both datasets can be simply linked together, but that the ERA5 SDT amplitudes are significantly underestimated at the top model levels of the ERA5 reanalysis project.  相似文献   
5.
The paper describes a new technique that improves precision of the virtual height measurements by a coherent pulse sounding of the ionosphere. Proposed technique is based on the method of maximum likelihood that matches expected and observed spectral domain signatures of the signal intermixed with the noise. Computer simulations show that our technique allows measurements of the echo virtual height with ∼100 m precision even at a much coarser step of the height sampling in the sounder. In experiment, we expect an average 300 m precision of the virtual height measurements for single echoes received during periods of little spread due to ionospheric irregularities.  相似文献   
6.
A technique of modelling the one-hop radio wave propagation at middle latitudes in the presence of sporadic E-Layer is presented. The technique is focused on the performance of the long-term forecast of the maximum usable frequency range and on the increase of the radio communication reliability. Examples of calculation for medium-distance paths are shown.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号