首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
航天技术   3篇
  2021年   1篇
  2019年   1篇
  2014年   1篇
排序方式: 共有3条查询结果,搜索用时 50 毫秒
1
1.
To investigate the precursory signature of earthquakes on low frequency (LF) signal propagation, six earthquakes, having magnitude greater than equal to 6.5 and depth less than equal to 30 km, are being studied. The base line level of 40 kHz signal, transmitted from JJY station, Japan, is analysed with respect to Vd statistical parameter. Results show that the Vd parameter values starts fluctuating from its ambient levels before and during the days of the earthquakes, with significant variation starting 1–3 days prior to the earthquake concerned. This present study is an approach for identifying the precursory signatures of earthquakes on LF signal propagation using a new methodology with Vd parameter.  相似文献   
2.
Following Tanna et al. (2013), we computed the percentage of occurrence of S4 index for the period of 2012–2015 using the data of the dual frequency GPS receiver at the Tripura University, Agartala station (23.76°N, 91.26°E) situated at the northern crest of the equatorial ionization anomaly (EIA) region of the Indian Subcontinent. We have observed discrepancy in the results contradicting the actual scintillation occurrence. The distinctly noticeable discrepancy is that the maximum occurrence month is shifted to April 2013 instead of March 2014. The problem arises due to the denominator term used in the percentage of occurrence ratio i.e. the total number of days of observed scintillation activity during the complete period under consideration. But the conventional percentage of occurrence methodology uses the number of days of observation (the total number of days for which data is available) during each month in the denominator. It correctly assigns the maximum occurrence to March 2014 instead of April 2013 and the obtained monthly statistics follow the solar activity during this period.  相似文献   
3.
The present study uses five Martian years of observations from Mars Climate Sounder onboard Mars Reconnaissance Orbiter for investigating the Aphelion Cloud Belt (ACB) over the tropics. Analysis of zonal mean water ice column opacity suggests that the spatial extension of the ACB is mainly confined over the tropics and mid-latitudes (-20 – 40°N) during LS ~ 45 – 135° (LS = 0° signifies northern spring equinox). The ACB is seen primarily in the nighttime only due to the truncation of the daytime profile observations at significantly higher altitudes (at ~30 km). Zonal mean ice extinction profiles show ACB’s altitudinal range within ~10 – 40 km, and the existence of a thin cloud band in the absence of a thick ACB during aphelion season. Three phases of the ACB could be identified as the formation phase during LS = 45 – 75° (phase 1), the peak phase during LS = 76 – 105° (phase 2), and the decaying phase during LS = 106 – 135° (phase 3). Observation of the cloud latitude belt shows a northward movement starting from phase 2, prominent over regions nearby Lunae Planum and Xanthe Terra. During this phase, the top level of thick clouds within the ACB decreases to ~20 km in the southern hemisphere, while it increases a little over the northern hemisphere (NH). The decreasing tendency continues in phase 3 over the entire region ?10 – 10°N, and the thick cloud base moves higher over the NH, though the vertical depth of it becomes narrower than phase 2. Temperature profiles do not show any noticeable influence on the northward evolution of the ACB. However, the study at a regional level indicates a possible association of upper tropospheric dustiness with the ACB’s evolution. The mechanism is evident in the correlation analysis mostly at an altitude range of ~18 – 35 km. The migrating semidiurnal tide (SMD) as a proxy of dust or water ice forcing, and the calculated upper tropospheric dust radiative heating, shows an apparent northward movement of their peak amplitude within the three phases of the ACB. This match between the spatiotemporal variations of the SMD and the water ice was not observed previously. However, the correlating behavior seems to be prominent in the areas nearby Lunae Planum and Xanthe Terra and the upper-tropospheric region of the atmosphere.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号