首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
航空   1篇
航天技术   2篇
  2013年   1篇
  2010年   1篇
  1995年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Between its launch in October 1990 and the end of 1993, approximately 160 fast collisionless shock waves were observed in the solar wind by the Ulysses space probe. During the in-ecliptic part of the mission, to February 1992, the observed shock waves were first caused mainly by solar transient events following the solar maximum and the reorganisation of the large scale coronal fields. With the decay in solar activity, relatively stable Corotating Interaction Regions (CIRs) were observed betwen 3 and 5.4 AU, each associated with at least one forwardreverse shock pair. During the out-of-ecliptic phase of the orbit, from February 1992 onwards, CIRs and shock pairs associated with them continued to dominate the observations. From July 1992, Ulysses encountered the fast solar wind flow from the newly developed southern polar coronal hole, and from May 1993 remained in the unipolar magnetic region associated with this coronal hole. At latitudes beyond 30°, CIRs were associated almost exclusively with reverse shocks only. A comprehensive list of shock waves identified in the magnetic field and solar wind plasma data from Ulysses is given in Table 1. The principal characteristics were determined mainly from the magnetic field data. General considerations concerning the determination of shock characteristics are outlined in the Introduction.  相似文献   
2.
We present an analytic model of a stationary bow shock which describes the interaction between a supermagnetosonic ambient wind and an obstacle with spherical-like frontal shape. We develop expressions for the bow shock’s geometry and the physical properties of the plasma sheath as functions of the upstream conditions. The solution is limited to magnetic fields parallel to the upstream velocity. The model allows to use any value of the upstream alfvenic and sonic Mach numbers and the polytropic index (γγ), pointing out the influence of γγ for the magnetosheath compression and the bow shock shape. When both Mach numbers are small, the upstream magnetic field intensity affects also the bow shock shape. We compare our results with other models finding important consistencies. We also compare our results with in-situ data, we fund a reasonable qualitative agreement; however, it seems that our model underestimates the magnetosheath size.  相似文献   
3.
The tracking of large-scale interplanetary (IP) disturbances traveling from the Sun to the Earth is a key issue in space weather studies. The Mexican Array Radio Telescope (MEXART) applies the Interplanetary Scintillation (IPS) technique to detect these solar wind disturbances and it will participate in a global warning network of space weather forecasting. We describe the data storage and computational processes carried out to manage the instrument’s real time data. These procedures are important for the MEXART calibration, operation and the scientific data reduction.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号