首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   0篇
  国内免费   1篇
航空   148篇
航天技术   22篇
航天   14篇
  2019年   1篇
  2018年   66篇
  2017年   38篇
  2016年   2篇
  2015年   3篇
  2014年   16篇
  2013年   3篇
  2012年   1篇
  2011年   12篇
  2010年   7篇
  2009年   3篇
  2008年   6篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2001年   4篇
  1999年   1篇
  1993年   4篇
  1992年   2篇
  1989年   1篇
  1980年   1篇
  1972年   1篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
171.
172.
173.
This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be \(\geq3\mbox{--}5~\mbox{m}\) thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.  相似文献   
174.
The NASA Juno mission includes a six-channel microwave radiometer system (MWR) operating in the 1.3–50 cm wavelength range in order to retrieve abundances of ammonia and water vapor from the microwave signature of Jupiter (see Janssen et al. 2016). In order to plan observations and accurately interpret data from such observations, over 6000 laboratory measurements of the microwave absorption properties of gaseous ammonia, water vapor, and aqueous ammonia solution have been conducted under simulated Jovian conditions using new laboratory systems capable of high-precision measurement under the extreme conditions of the deep atmosphere of Jupiter (up to 100 bars pressure and 505 K temperature). This is one of the most extensive laboratory measurement campaigns ever conducted in support of a microwave remote sensing instrument. New, more precise models for the microwave absorption from these constituents have and are being developed from these measurements. Application of these absorption properties to radiative transfer models for the six wavelengths involved will provide a valuable planning tool for observations, and will also make possible accurate retrievals of the abundance of these constituents during and after observations are conducted.  相似文献   
175.
We carried out an assessment of surface and subsurface properties based on radar observations of the region in western Elysium Planitia selected as the landing site for the InSight mission. Using observations from Arecibo Observatory and from the Mars Reconnaissance Orbiter’s Shallow Radar (SHARAD), we examined the near-surface properties of the landing site, including characterization of reflectivity, near-surface roughness, and layering. In the Arecibo data (12.6-cm wavelength), we found a radar-reflective surface with no unusual properties that would cause problems for the InSight radar altimeter (7-cm wavelength). In addition, the moderately low backscatter strength is indicative of a relatively smooth surface at \({\sim} 10\mbox{-cm}\) scales that is composed of load-bearing materials and should not present a hazard for landing safety. For roughness at 10–100 m scales derived from SHARAD data, we find relatively low values in a narrow distribution, similar to those found at the Phoenix and Opportunity landing sites. The power of returns at InSight is similar to that at Phoenix and thus suggestive of near-surface layering, consistent with a layer of regolith over bedrock (e.g., lava flows) that is largely too shallow (\({<}10\mbox{--}20~\mbox{m}\)) for SHARAD to discern distinct reflectors. However, an isolated area outside of the ellipse chosen in 2015 for InSight’s landing shows faint returns that may represent such a contact at depths of \({\sim} 20\mbox{--}43~\mbox{m}\).  相似文献   
176.
The atmospheric pressure fluctuations on Mars induce an elastic response in the ground that creates a ground tilt, detectable as a seismic signal on the InSight seismometer SEIS. The seismic pressure noise is modeled using Large Eddy Simulations (LES) of the wind and surface pressure at the InSight landing site and a Green’s function ground deformation approach that is subsequently validated via a detailed comparison with two other methods: a spectral approach, and an approach based on Sorrells’ theory (Sorrells, Geophys. J. Int. 26:71–82, 1971; Sorrells et al., Nat. Phys. Sci. 229:14–16, 1971). The horizontal accelerations as a result of the ground tilt due to the LES turbulence-induced pressure fluctuations are found to be typically \(\sim 2 \mbox{--} 40~\mbox{nm}/\mbox{s}^{2}\) in amplitude, whereas the direct horizontal acceleration is two orders of magnitude smaller and is thus negligible in comparison. The vertical accelerations are found to be \(\sim 0.1\mbox{--}6~\mbox{nm}/\mbox{s}^{2}\) in amplitude. These are expected to be worst-case estimates for the seismic noise as we use a half-space approximation; the presence at some (shallow) depth of a harder layer would significantly reduce quasi-static displacement and tilt effects.We show that under calm conditions, a single-pressure measurement is representative of the large-scale pressure field (to a distance of several kilometers), particularly in the prevailing wind direction. However, during windy conditions, small-scale turbulence results in a reduced correlation between the pressure signals, and the single-pressure measurement becomes less representative of the pressure field. The correlation between the seismic signal and the pressure signal is found to be higher for the windiest period because the seismic pressure noise reflects the atmospheric structure close to the seismometer.In the same way that we reduce the atmospheric seismic signal by making use of a pressure sensor that is part of the InSight Auxiliary Payload Sensor Suite, we also the use the synthetic noise data obtained from the LES pressure field to demonstrate a decorrelation strategy. We show that our decorrelation approach is efficient, resulting in a reduction by a factor of \(\sim 5\) in the observed horizontal tilt noise (in the wind direction) and the vertical noise. This technique can, therefore, be used to remove the pressure signal from the seismic data obtained on Mars during the InSight mission.  相似文献   
177.
This paper summarizes the results obtained by the team “Heliosheath Processes and the Structure of the Heliopause: Modeling Energetic Particles, Cosmic Rays, and Magnetic Fields” supported by the International Space Science Institute (ISSI) in Bern, Switzerland. We focus on the physical processes occurring in the outer heliosphere, especially at its boundary called the heliopause, and in the local interstellar medium. The importance of magnetic field, charge exchange between neutral atoms and ions, and solar cycle on the heliopause topology and observed heliocentric distances to different heliospheric discontinuities are discussed. It is shown that time-dependent, data-driven boundary conditions are necessary to describe the heliospheric asymmetries detected by the Voyager spacecraft. We also discuss the structure of the heliopause, especially due to its instability and magnetic reconnection. It is demonstrated that the Rayleigh–Taylor instability of the nose of the heliopause creates consecutive layers of the interstellar and heliospheric plasma which are magnetically connected to different sources. This may be a possible explanation of abrupt changes in the galactic and anomalous cosmic ray fluxes observed by Voyager 1 when it was crossing the heliopause structure for a period of about one month in the summer of 2012. This paper also discusses the plausibility of fitting simulation results to a number of observational data sets obtained by in situ and remote measurements. The distribution of magnetic field in the vicinity of the heliopause is discussed in the context of Voyager measurements. It is argued that a classical heliospheric current sheet formed due to the Sun’s rotation is not observed by in situ measurements and should not be expected to exist in numerical simulations extending to the boundary of the heliosphere. Furthermore, we discuss the transport of energetic particles in the inner and outer heliosheath, concentrating on the anisotropic spatial diffusion diffusion tensor and the pitch-angle dependence of perpendicular diffusion and demonstrate that the latter can explain the observed pitch-angle anisotropies of both the anomalous and galactic cosmic rays in the outer heliosheath.  相似文献   
178.
We present the design, implementation, and on-ground performance measurements of the Ionospheric Connection Explorer EUV spectrometer, ICON EUV, a wide field (\(17^{\circ}\times 12^{\circ}\)) extreme ultraviolet (EUV) imaging spectrograph designed to observe the lower ionosphere at tangent altitudes between 100 and 500 km. The primary targets of the spectrometer, which has a spectral range of 54–88 nm, are the Oii emission lines at 61.6 nm and 83.4 nm. Its design, using a single optical element, permits a 0 . ° 26 Open image in new window imaging resolution perpendicular to the spectral dispersion direction with a large (\(12^{\circ} \)) acceptance parallel to the dispersion direction while providing a slit-width dominated spectral resolution of \(R\sim25\) at 58.4 nm. Pre-flight calibration shows that the instrument has met all of the science performance requirements.  相似文献   
179.
The Juno Gravity Science Instrument   总被引:1,自引:0,他引:1  
The Juno mission’s primary science objectives include the investigation of Jupiter interior structure via the determination of its gravitational field. Juno will provide more accurate determination of Jupiter’s gravity harmonics that will provide new constraints on interior structure models. Juno will also measure the gravitational response from tides raised on Jupiter by Galilean satellites. This is accomplished by utilizing Gravity Science instrumentation to support measurements of the Doppler shift of the Juno radio signal by NASA’s Deep Space Network at two radio frequencies. The Doppler data measure the changes in the spacecraft velocity in the direction to Earth caused by the Jupiter gravity field. Doppler measurements at X-band (\(\sim 8\) GHz) are supported by the spacecraft telecommunications subsystem for command and telemetry and are used for spacecraft navigation as well as Gravity Science. The spacecraft also includes a Ka-band (\(\sim 32\) GHz) translator and amplifier specifically for the Gravity Science investigation contributed by the Italian Space Agency. The use of two radio frequencies allows for improved accuracy by removal of noise due to charged particles along the radio signal path.  相似文献   
180.
Both sensors of the SEIS instrument (VBBs and SPs) are mounted on the mechanical leveling system (LVL), which has to ensure a level placement on the Martian ground under currently unknown local conditions, and provide the mechanical coupling of the seismometers to the ground. We developed a simplified analytical model of the LVL structure in order to reproduce its mechanical behavior by predicting its resonances and transfer function. This model is implemented numerically and allows to estimate the effects of the LVL on the data recorded by the VBBs and SPs on Mars. The model is validated through comparison with the horizontal resonances (between 35 and 50 Hz) observed in laboratory measurements. These modes prove to be highly dependent of the ground horizontal stiffness and torque. For this reason, an inversion study is performed and the results are compared with some experimental measurements of the LVL feet’s penetration in a martian regolith analog. This comparison shows that the analytical model can be used to estimate the elastic ground properties of the InSight landing site. Another application consists in modeling the 6 sensors on the LVL at their real positions, also considering their sensitivity axes, to study the performances of the global SEIS instrument in translation and rotation. It is found that the high frequency ground rotation can be measured by SEIS and, when compared to the ground acceleration, can provide ways to estimate the phase velocity of the seismic surface waves at shallow depths. Finally, synthetic data from the active seismic experiment made during the HP3 penetration and SEIS rotation noise are compared and used for an inversion of the Rayleigh phase velocity. This confirms the perspectives for rotational seismology with SEIS which will be developed with the SEIS data acquired during the commissioning phase after landing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号