首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   0篇
  国内免费   1篇
航空   148篇
航天技术   22篇
航天   14篇
  2019年   1篇
  2018年   66篇
  2017年   38篇
  2016年   2篇
  2015年   3篇
  2014年   16篇
  2013年   3篇
  2012年   1篇
  2011年   12篇
  2010年   7篇
  2009年   3篇
  2008年   6篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2001年   4篇
  1999年   1篇
  1993年   4篇
  1992年   2篇
  1989年   1篇
  1980年   1篇
  1972年   1篇
排序方式: 共有184条查询结果,搜索用时 62 毫秒
151.
We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to today’s Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars’ present day conditions and its implications for future Mars missions. Understanding the modern Martian climate is important to determine if Mars could have the conditions to support life and to prepare for future human exploration.  相似文献   
152.
153.
154.
Four types of optimal solutions are demonstrated to exist for transfers (time of flight is not fixed) between close near-circular coplanar orbits. One solution is realized with the help of fixed orientation of the propulsion system (PS) along a transversal in the orbital coordinate system. Another is reached at fixed orientation of the PS in the inertial coordinate system. The third and fourth types of solutions change the PS orientation in the process of executing the maneuver. Regions of existence are established for all types of solutions, and algorithms for determination of parameters of these maneuvers are suggested. The algorithms were used to calculate parameters of the maneuvers of transfer from a launching orbit to a working Sun-synchronous orbit, and to calculate the maneuvers of supporting the parameters of such an orbit in a specified range.  相似文献   
155.
The Dawn spectrometer (VIR) is a hyperspectral spectrometer with imaging capability. The design fully accomplishes Dawn’s scientific and measurement objectives. Determination of the mineral composition of surface materials in their geologic context is a primary Dawn objective. The nature of the solid compounds of the asteroid (silicates, oxides, salts, organics and ices) can be identified by visual and infrared spectroscopy using high spatial resolution imaging to map the heterogeneity of asteroid surfaces and high spectral resolution spectroscopy to determine the composition unambiguously. The VIR Spectrometer—covering the range from the near UV (0.25 μm) to the near IR (5.0 μm) and having moderate to high spectral resolution and imaging capabilities—is the appropriate instrument for the determination of the asteroid global and local properties. VIR combines two data channels in one compact instrument. The visible channel covers 0.25–1.05 μm and the infrared channel covers 1–5.0 μm. VIR is inherited from the VIRTIS mapping spectrometer (Coradini et al. in Planet. Space Sci. 46:1291–1304, 1998; Reininger et al. in Proc. SPIE 2819:66–77, 1996) on board the ESA Rosetta mission. It will be operated for more than 2 years and spend more than 10 years in space.  相似文献   
156.
Many widely used methods for describing and understanding the magnetosphere are based on balance conditions for quasi-static equilibrium (this is particularly true of the classical theory of magnetosphere/ionosphere coupling, which in addition presupposes the equilibrium to be stable); they may therefore be of limited applicability for dealing with time-variable phenomena as well as for determining cause-effect relations. The large-scale variability of the magnetosphere can be produced both by changing external (solar-wind) conditions and by non-equilibrium internal dynamics. Its developments are governed by the basic equations of physics, especially Maxwell’s equations combined with the unique constraints of large-scale plasma; the requirement of charge quasi-neutrality constrains the electric field to be determined by plasma dynamics (generalized Ohm’s law) and the electric current to match the existing curl of the magnetic field. The structure and dynamics of the ionosphere/magnetosphere/solar-wind system can then be described in terms of three interrelated processes: (1) stress equilibrium and disequilibrium, (2) magnetic flux transport, (3) energy conversion and dissipation. This provides a framework for a unified formulation of settled as well as of controversial issues concerning, e.g., magnetospheric substorms and magnetic storms.  相似文献   
157.
158.
The Mathematical Statistics Theory (MST) and the Mathematical Theory of Stochastic Processes (MTSP) are different branches of the more general Mathematical Probability Theory (MPT) that can be used to investigate physical processes through mathematics. Each model of a stochastic process, according to MTSP, can provide one or more interpretations in the MST domain. A large body of work on impact crater statistics according to MST exists, showing cumulative crater frequency (N km−2) as a function of age (years) for some particular crater diameter. However, this is only one possible representation in the MST domain of the bombardment of the planetary surface modeled as a stochastic process according to MTSP. The idea that other representations are possible in the MST domain of the same stochastic process from MTSP has been recently presented. The importance of the approach is that each such mathematical-based interpretation can provide a large amount of new information. Coupled with MOLA data, Topography-Profile Diagrams (TPD) are one of the many examples that can provide a large amount of new information regarding the history of Mars. TPD consists of: (1) Topography-Profile Curve (TPC), which is a representation of the planet’s topography, (2) Density-of-Craters Curve (DCC), which represents density of craters, (3) Filtered-DCC (FDCC), which represents DCC filtered by a low-pass filter, included with the purpose of reducing the noise, and (4) Level-of-Substance-Over-Time Curve (LSOTC), which represents interpretation of the influence on the distribution of craters shown by FDCC. TPC uniquely corresponds to the computation of TPD, whereas DCC depends on algorithms for computing the elevation of each crater according to the topography, center coordinates, and radius of impact crater, and FDCC relies on the architecture of the custom designed low-pass filter for filtering DCC. However, all variations of DCC and FDCC, which includes the various impact crater data sets, showed a correlation among the density of craters and elevation over 70–80% of the planet surface. Additionally, if we assume that the ocean primarily caused the noted correlation, LSOTC offers a mathematical approach for estimating topographic change of the ocean’s extent over time. Accordingly, TPD is the first new practical application of MTSP to lunar and planetary sciences, showing correlation of topography to a physical process.  相似文献   
159.
The observational information on X-ray binaries that was collected with the 80 cm2 auxiliary X-ray detector onboard the COS-B gamma-ray satellite is reviewed. The results illustrate that in the study of X-ray binaries observations of long duration are extremely effective, even when using a small instrument.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号