首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
航空   10篇
航天技术   29篇
航天   5篇
  2021年   1篇
  2014年   2篇
  2012年   1篇
  2011年   4篇
  2010年   4篇
  2009年   4篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   5篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1989年   1篇
  1981年   1篇
  1978年   1篇
  1969年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
31.
BEPI COLOMBO is a joint mission between ESA and JAXA that is scheduled for launch in 2014 and arrival at Mercury in 2020. A comprehensive set of ion sensors will be flown onboard the two probes that form BEPI COLOMBO. These ion sensors combined with electron analyzers will allow a detailed investigation of the structure and dynamics of the charged particle environment at Mercury. Among the ion sensors, the Mass Spectrum Analyzer (MSA) is the experiment dedicated to composition analysis onboard the Mercury Magnetospheric Orbiter (MMO). It consists of a top-hat for energy analysis followed by a Time-Of-Flight (TOF) section to derive the ion mass. A notable feature of MSA is that the TOF section is polarized with a linear electric field that provides an enhanced mass resolution, a capability that is of importance at Mercury since a variety of species originating from the planet surface and exosphere is expected. MSA exhibits two detection planes: (i) one with moderate mass resolution but a high count rate making MSA appropriate for plasma analysis, (ii) another with a high (above 40) mass resolution though a low count rate making it appropriate for planetology science. Taking advantage of the spacecraft rotation, MSA will provide three-dimensional distribution functions of magnetospheric ions, from energies characteristic of exospheric populations (a few eVs or a few tens of eVs) up to the plasma sheet energy range (up to ∼40 keV/q) in one spin (4 s).  相似文献   
32.
Properties of tandem balloons connected by extendable suspension wires   总被引:1,自引:0,他引:1  
The tandem balloon system has been known as a candidate system for long duration flight balloons. In this paper, the properties of the system are analytically studied in a new way by introducing an extendable suspension wire in the Sky Anchor configuration, which consists of a zero-pressure main balloon suspending a payload and a super-pressure balloon suspended below the payload. It was found that extension of the suspension wire between the payload and the super-pressure balloon can extend the capability of the tandem system; the altitude of the zero-pressure balloon can be changed without any consumables except some energy, and the day–night oscillation of the balloon altitude can be suppressed. This property is useful as the vehicle for long duration flights. It is also pointed out that the method to control the altitude of a balloon using an additional suspended super-pressure balloon can also be applied for super-pressure balloons.  相似文献   
33.
Radio occultation observations of the electron density near the lunar surface were conducted during the SELENE (Kaguya) mission using the Vstar and Rstar sub-satellites. Previous radio occultation measurements conducted in the Soviet lunar missions have indicated the existence of an ionosphere with peak densities of several hundreds of electrons per cubic centimeters above the dayside lunar surface. These densities are difficult to explain theoretically when the removal of plasma by the solar wind is considered, and thus the generation mechanism of the lunar ionosphere is a major issue, with even the validity of previous observations still under debate. The most serious error source in the measurement is the fluctuation of the terrestrial ionosphere which also exists along the ray path. To cope with this difficulty, about 400 observations were conducted using Vstar to enable statistical analysis of the weak signal of the lunar ionosphere. Another method is to utilize Vstar and Rstar with the second one being used to measure the terrestrial ionosphere contribution. The observations will establish the morphology of the lunar ionosphere and will reveal its relationship with various conditions to provide possible clues to the mechanism.  相似文献   
34.
Japan has been active in the development of space science and technology, for peaceful purposes only, since 1955. This article describes the formation of the Space Activities Commission as the country's primary policy-making body, and of the National Space Development Agency, which oversees the development of space technology. The fundamental guidelines governing space activities are explained, and a detailed breakdown is given of projects agreed for the coming years.  相似文献   
35.
Despite huge amount of data collected by the previous interplanetary spacecraft and probes, the origin and evolution of the solar system still remains unveiled due to limited information they brought back. Thus, the Institute of Space and Astronautical Science (ISAS) of Japan has been given a commitment to pave the way to an asteroid sample return mission: the MUSES-C project. A key to success is considered the reentry with hyperbolic velocity, which has not ever been demonstrated as yet. With this as background, a demonstrator of atmospheric reentry system, DASH, has been designed to demonstrate the high-speed reentry technology as a GTO piggyback mission. The capsule, identical to that of the sample return mission, can experience the targeted level of thermal environment even from the GTO by tracing a specially designed reentry trajectory. After the purpose of the mission was outlined at the last IAF symposium, the final fitting tests have been conducted in the ISAS Sagamihara Campus involving the flight model hardware. Furthermore, a series of rehearsals for recovery have been already executed. The paper describes the current mission status of the project.  相似文献   
36.
Cosmic-ray electrons have been observed in the energy region from 10 GeV to 1 TeV with the PPB-BETS by a long duration balloon flight using a Polar Patrol Balloon (PPB) in Antarctica. The observation was carried out for 13 days at an average altitude of 35 km in January 2004. The PPB-BETS detector is an imaging calorimeter composed of scintillating-fiber belts and plastic scintillators inserted between lead plates. In the study of cosmic-ray electrons, there have been some suggestions that high-energy electrons above 100 GeV are a powerful probe to identify nearby cosmic-ray sources and search for particle dark matter. In this paper, we present the energy spectrum of cosmic-ray electrons in the energy range from 100 GeV to 1 TeV at the top of atmosphere, and compare our spectrum with the results from other experiments.  相似文献   
37.
38.
From the viewpoint of plasma particle measurements in the radiation belt, background noise is a serious problem. High-energy particles penetrating the sensor shielding generate spurious signals, and their count rate often can be comparable to the true signals. In order to attenuate such background noise during medium-energy (5–83 keV) electron measurements, we propose the double energy analyses (DEA) method. DEA is conducted by a combination of an electrostatic analyser (ESA) and avalanche photo-diodes (APDs); ESA and APD independently determine the energy of each incoming particle. By using the DEA method, therefore, the penetrating particles can be rejected when the two energy determinations are inconsistent; spurious noise are caused only when the deposited energy at an APD is by chance consistent with the measured energy by ESA. We formulate the noise count rate and show the advantage of DEA method quantitatively.  相似文献   
39.
Certain aspects of the Sun and resulting geomagnetic disturbances can be studied better on the source surface, an imaginary spherical surface of 3.5 solar radii, than on the photospheric surface. This paper presents evidence that the Sun exhibits one of the most fundamental aspects of activities most clearly during the late-declining phase of the sunspot cycle. It is the period when 27-day average values of the solar wind speed and of geomagnetic disturbances tend to be highest during the sunspot cycle. Important findings of this study on the late-declining phase of the sunspot cycle are the following:
  1. By introducing a new coordinate system, modifying the Carrington coordinates, it is shown that various solar activity phenomena, solar flares, the brightest coronal regions, and also the lowest solar wind speed region, tend to concentrate in two quadrants, one around 90° in longitude in the northern hemisphere (NE) and the other around 270° in longitude in the southern hemisphere (SW). For this reason, the new coordinate system is referred to as the NESW coordinate system.
  2. It is shown that the above results are closely related to the fact that the neutral line exhibits a single wave (sinusoidal or rectangular) in both the Carrington coordinates and the NESW coordinate system during the late-declining phase. The shift of the neutral line configuration during successive solar rotations during the late-declining phase causes longitudinal scatter of the location of solar flares with respect to the neutral line in a statistical study. The NESW coordinate system is designed to suppress the shift, so that the single wave location is fixed and thus a ‘nest’ of solar flares emerges in the NE and SW quadrants.
  3. It is also shown that the single wave is the source of the double peak of the solar wind speed and two series of recurrent geomagnetic disturbances in each solar rotation, making the 27-day average solar wind and geomagnetic disturbances highest during the sunspot cycle. The double peak is a basic feature during the late-declining phase, but is obscured by several complexities which we identified in this paper; see item 8.
  4. The single wave of the neutral line configuration can be approximated by three dipole fields, one which can be represented by a central dipole (parallel or anti-parallel to the rotation axis) and two hypothetical dipoles on the photosphere. This configuration is referred to as the triple dipole model.
  5. The location of the two hypothetical photospheric dipoles coincide with the two active regions (solar flares, the brightest coronal region) and also the lowest solar wind speed region in the NESW coordinate system; the lowest solar wind regions are the cause of the valleys of the double peak of the solar wind speed.
  6. The two hypothetical dipole fields actually do exist at the location of the two active regions in a coarse magnetic map (5 × 5°). The two dipoles follow the Hale–Nicholson polarity law. Thus, they are real physical entities.
  7. The apparent meridional rotation of the dipolar field on the source surface during the sunspot cycle results from combined changes of both the central dipole field and of the two photospheric dipoles, although the central dipole remains axially parallel or anti-parallel. Thus, the Sun has a general field that can be represented by an axially aligned dipole located at the center of the Sun throughout the sunspot cycle, except for the sunspot maximum period when the polarization reversal occurs.
  8. The complexity of recurrent geomagnetic disturbances can also be understood by having the NESW coordinate system for various solar phenomena and the relative location of the earth with respect to the solar equatorial plane.
  9. As the intensity of the two dipoles decreases toward the end of the sunspot cycle, the amplitude of the single wave decreases, and the neutral line tends to align with the heliographic equator.
  10. The neutral line shows a double wave structure during certain epochs of the sunspot cycle. In such a situation, it can be considered that two NESW coordinate systems are present in one Carrington coordinate, resulting in four active regions.
  11. The so-called classical “sector boundary” arises when the peaks (top and bottom) of the single wave reached 90° in latitude in both hemispheres.
  12. In summary: A study of the late-declining period of the sunspot cycle is very important compared with the sunspot maximum period. In the late-declining period, the Sun shows its activities in the simplest form. It is suggested that some of the basic features of solar activities and recurrent geomagnetic disturbances that have been studied by many researchers in the past can be synthesized in a simplest way by introducing the NESW coordinate system and the triple dipole model. There is a possibility that the basic results we learned during the late phase of the sunspot cycle can be applicable to the rest of the sunspot cycle.
  相似文献   
40.
Bepi Colombo is a joint mission between ESA and JAXA that is scheduled for launch in 2014 and arrival at Mercury in 2020. A comprehensive set of particle sensors will be flown onboard the two probes that form Bepi Colombo. These sensors will allow a detailed investigation of the structure and dynamics of the charged particle environment at Mercury. Onboard the Mercury Magnetospheric Orbiter (MMO) the Mercury Electron Analyzers (MEA) sensors constitute the experiment dedicated to fast electron measurements between 3 and 25,500 eV. They consist of two top-hat electrostatic analyzers for angle-energy analysis followed by microchannel plate multipliers and collecting anodes. A notable and new feature of MEA is that the transmission factor of each analyzer can be varied in-flight electronically by a factor reaching up to 100, thus allowing to largely increasing the dynamical range of the experiment. This capability is of importance at Mercury where large changes of electron fluxes are expected from the solar wind to the various regions of the Mercury magnetosphere. While the first models are being delivered to JAXA, an engineering model has been tested and proven to fulfill the expectations about geometrical factor reduction and energy-angular transmission characteristics. Taking advantage of the spacecraft rotation with a 4 s period, MEA will provide fast three-dimensional distribution functions of magnetospheric electrons, from energies of the solar wind and exospheric populations (a few eVs) up to the plasma sheet energy range (some tens of keV). The use of two sensors viewing perpendicular planes allows reaching a ¼ spin period time resolution, i.e., 1 s, to obtain a full 3D distribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号