首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4591篇
  免费   1061篇
  国内免费   939篇
航空   3298篇
航天技术   1157篇
综合类   657篇
航天   1479篇
  2024年   27篇
  2023年   54篇
  2022年   154篇
  2021年   187篇
  2020年   182篇
  2019年   130篇
  2018年   156篇
  2017年   179篇
  2016年   172篇
  2015年   217篇
  2014年   289篇
  2013年   318篇
  2012年   349篇
  2011年   358篇
  2010年   380篇
  2009年   351篇
  2008年   347篇
  2007年   278篇
  2006年   242篇
  2005年   205篇
  2004年   158篇
  2003年   149篇
  2002年   158篇
  2001年   140篇
  2000年   167篇
  1999年   172篇
  1998年   189篇
  1997年   140篇
  1996年   124篇
  1995年   91篇
  1994年   89篇
  1993年   91篇
  1992年   71篇
  1991年   63篇
  1990年   47篇
  1989年   38篇
  1988年   52篇
  1987年   37篇
  1986年   18篇
  1985年   5篇
  1984年   6篇
  1983年   5篇
  1982年   3篇
  1971年   1篇
  1965年   2篇
排序方式: 共有6591条查询结果,搜索用时 15 毫秒
991.
暴露在低地球轨道(LEO)上的太阳电池阵,会与大量具有极强氧化性的原子氧发生碰撞,导致太阳电池阵中对氧原子敏感的Ag互连材料受到剥蚀。文章依据原子氧剥蚀Ag材料的机理,选取了约400 km高度轨道上1年时间内原子氧的累积通量作为最高剂量,进行了原子氧剥蚀不同厚度Ag互连材料的地面模拟环境试验。试验表明:Ag在原子氧作用下在宏观上会经历"氧化—剥落"的循环剥蚀过程。根据反应方程简化推导了Ag互连片的剥蚀厚度公式,同时结合试验结果计算出了不同厚度Ag互连材料的厚度损失率。该研究成果可为LEO太阳电池阵原子氧防护设计提供技术支持。  相似文献   
992.
对于停留在日地系统L2的“嫦娥2号”探测器,其后续飞行方案有多个选项,例如主动撞月或重返月球轨道、返回地球轨道或再入大气、飞往地月系统L1/L2或日地系统L1、进入深空飞越近地小行星(最终,“嫦娥2号”于2012年12月13日成功地实现了对Toutatis小行星的近距离飞越)。探讨上述的飞行方案需要对飞行轨道进行初步设计,总的速度脉冲限制在100 m/s以内并且需要考虑探测器同时受到太阳、地球、月球的引力作用。本研究设计了探测器从日地系统L2出发借力月球实现Toutatis小行星飞越的飞行方案,与直接飞越方案相比,借力月球可以进一步节省探测器的燃料消耗,其等效速度脉冲设计值为58.47 m/s。  相似文献   
993.
后缘小翼型智能旋翼桨叶模型设计分析与试验研究   总被引:5,自引:0,他引:5  
提出了一种基于推挽式双X压电驱动机构的后缘小翼型智能旋翼方案,开展了后缘小翼型智能旋翼模型的设计分析与试验研究.空载试验主要用于验证驱动机构的驱动特性,测试了压电堆和驱动机构的静态输出;为了验证悬停时小翼在铰链力矩作用下驱动机构能否有效驱动后缘小翼,进行了加载试验.试验采用线性霍尔传感嚣对推挽式双X型驱动机构在不同电压和频率驱动下小翼的偏转角度进行了测量.理论分析与试验测试结果基本吻合,压电驱动机构能够有效驱动后缘小翼,该智能旋翼方案是合理和可行的.  相似文献   
994.
网格式肋化通道换热与总压损失特性研究   总被引:10,自引:6,他引:4  
通过两个实验模型,对矩形网格式肋化通道的换热与总压损失特性进行了实验研究。模型通道的两个宽边是由铝板机械加工而成的肋化壁,两个短边是由胶木板制成的绝热壁。肋化壁上肋与通道轴线所形成的锐角定义为肋向角α,第一个模型的两个宽边上的肋向角分别为45°和-45°(简称45/45模型);第二个模型两宽边的肋向角分别为45°和-60°(简称45/60模型)。两个模型的肋宽与肋间距之比t/p=0.25,肋间距与肋高之比t/e=0.30,肋高与通道高度之比e/H=0.50,即两个肋化壁的肋尖相互接触,从而形成网格式通道。实验表明当雷诺数在0.5×105~1.2×105范围内变化时,网格式内冷通道换热效果比光滑通道提高了5~9倍,但伴随的总压损失增加了3个数量级。   相似文献   
995.
航天测控系统具有动态性、复杂性、可维修性、阶段间相关性等显著特征,作为航天器安全在轨运行的重要保障,其可靠性至关重要。针对航天测控系统可靠性精确计算的难点,提出了综合马尔可夫(Markov)模型和全概率思想的复杂、动态系统可靠性定量化计算方法,给出了计算流程。按照系统的动态组成特性,将任务进程划分为多个阶段,阶段内参试状态不变,不同阶段之间参试状态不同。借鉴Markov模型描述阶段内状态转移过程,通过求解Kolmogorov后向方程得到本阶段结束时的状态概率,利用全概率思想实现阶段间状态映射,体现阶段间的依赖性,依次对各阶段求解获取整个任务可靠性,具有求解准确度高、结果可信度高等特点。最后给出算例,通过与蒙特卡洛仿真结果的比对校验Markov方法的准确性。  相似文献   
996.
分析OpenGL中三维建模的主要方法,结合共轴式无人直升机实时监控飞行系统的设计需要,得出利用3DS MAX的输出模型进行三维建模可以大大提高效率。分析3DS MAX主要输出文件的结构,指出OpenGL建模所需的要素。设计并实现了3DS MAX到OpenGL的模型转换模块,能够分离出3DS MAX场景中的三维模型,为在实时监控系统中再现3DS模型并构造监控飞行系统的三维场景提供灵活性。  相似文献   
997.
为了探究不同遮挡偏距比双S弯排气系统的红外特性,试验研究了遮挡偏距比为55%和100%的双S弯二元排气系统的壁面温度分布和红外辐射特性,并与相应的基准轴对称排气系统进行了对比分析。结果表明:S弯喷管壁温整体要比基准轴对称喷管高约25%,第一S弯下游的上壁面附近存在局部高温区,提高S弯喷管遮挡偏距比后,温度梯度加剧,热应力集中。与基准轴对称排气系统相比,55%和100%遮挡偏距比双S弯二元排气系统均具有突出的红外抑制效果,正尾向(α=0°)红外辐射强度分别降低77.7%和79.3%。从温度和红外辐射强度综合评价,遮挡偏距比并非全遮挡最好,遮挡偏距比从55%提高到100%后,仅能有效抑制上方探测面α=5°和10°的红外辐射,而基本不会改变尾向其他探测方向的红外辐射,在工程设计时应权衡优化损失。  相似文献   
998.
结冰风洞中过冷大水滴云雾演化特性数值研究   总被引:1,自引:0,他引:1  
郭向东  柳庆林  刘森云  王梓旭  李明 《航空学报》2020,41(8):123655-123655
为明晰结冰风洞中过冷大水滴(SLD)云雾演化特性,发展了基于欧拉法的SLD液滴运动、传热和传质耦合计算方法,针对3 m×2 m结冰风洞主试验段水平收缩构型,分析了SLD云雾沉降收缩特性、动量平衡特性和热平衡特性,探索了液滴变形破碎的影响,评估了构型出口处SLD液滴动量平衡和热平衡状态。研究结果表明:直径超过250 μm的SLD液滴在构型内会发生显著形变,液滴尺寸越大则变形程度越强,尤其在160 m/s工况下,当液滴直径超过750 μm后,SLD液滴甚至会发生破碎;液滴变形破碎效应会增大液滴加速度和液滴温度下降率,促使SLD液滴趋近动量平衡和热平衡状态;SLD云雾(最大液滴直径小于1 000 μm)在构型出口处会出现显著的粒径浓度分层、动量分层和热分层现象,其中直径小于100 μm的小尺寸液滴速度快、温度低且不断凝结,趋于平衡态,但直径超过500 μm的大尺寸SLD液滴速度慢、温度高且不断蒸发,则显著偏离平衡态;增大试验段气流速度尽管会减弱SLD云雾粒径浓度分层程度,但会增强动量分层和热分层程度,尤其在160 m/s工况下,SLD云雾会均匀分布在构型出口中心区域内(-0.75 m < Y < 0.75 m且-0.5 m < Z < 0.5 m),与其平衡态间的最大速度差和温度差将分别超过18 m/s和20℃。  相似文献   
999.
1000.
张帅  方蜀州  许阳 《推进技术》2021,42(9):2002-2010
本文采用直接模拟蒙特卡罗(DSMC)方法,对高超声速稀薄流中航天器鼻锥迎风凹腔气动力与气动热性能进行了数值研究。得到了鼻锥外壁面、凹腔侧壁面以及凹腔底面的热流密度分布,分析了不同凹腔深宽比对鼻锥冷却效率以及凹腔腔体内气体参数的影响;以深宽比为1的凹腔为基准,研究了凹腔唇口钝化半径对航天器气动热与气动力的影响。数值结果表明,高超声速稀薄流中迎风凹腔能够降低鼻锥外壁面的热流密度;当凹腔深宽比达到1之后,凹腔侧壁面热流变化趋于一致,热流密度最低点的轴向位置不随深宽比改变,且凹腔底部热流很小;凹腔近底部气体均由稀薄流转化为连续流,腔内气体压力不断振荡;唇口钝化没有明显优势,虽然可以降低鼻锥峰值热流,但是会带来严重的气动力性能下降。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号