首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   706篇
  免费   274篇
  国内免费   155篇
航空   686篇
航天技术   129篇
综合类   90篇
航天   230篇
  2024年   10篇
  2023年   26篇
  2022年   59篇
  2021年   55篇
  2020年   55篇
  2019年   55篇
  2018年   59篇
  2017年   59篇
  2016年   37篇
  2015年   47篇
  2014年   46篇
  2013年   48篇
  2012年   89篇
  2011年   60篇
  2010年   51篇
  2009年   61篇
  2008年   58篇
  2007年   53篇
  2006年   50篇
  2005年   34篇
  2004年   53篇
  2003年   12篇
  2002年   22篇
  2001年   12篇
  2000年   9篇
  1999年   8篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1985年   1篇
  1983年   1篇
排序方式: 共有1135条查询结果,搜索用时 31 毫秒
861.
针对防热层与天线盖板的热匹配及烧蚀匹配开展研究,通过有限元方法,分析了尺寸效应对于天线盖板热匹配的影响,同时结合电弧风洞实验验证了防热层与天线盖板在高温下的烧蚀匹配行为。研究结果表明,按照实验件尺寸20 mm×20 mm,在实验环境条件下,防热层最大热应力为2.98 MPa,小于低密度石英酚醛复合材料在高温下的拉伸强度,不存在热匹配风险。当天线盖板尺寸大于60 mm时,防热层局部接触应力约为5.3 MPa,大于防热层在高温下的抗拉强度,天线盖板与周边防热层保证0.3 mm安装间隙,天线盖板在高温下的最大膨胀量为0.03~0.04 mm,远小于间隙值,因此不存在热匹配风险。天线盖板在与防热层烧蚀过程中,由于耐温较高,在高温下基本无烧蚀,低密度石英酚醛防热层烧蚀量约为 1.1 mm,因此在后续防热设计中可在天线盖板前缘处预留台阶,以减小高温下的烧蚀不匹配风险。  相似文献   
862.
形状记忆合金扭力驱动器的力学模型和实验研究   总被引:5,自引:0,他引:5  
熊克  陶宝祺  姚恩涛 《航空学报》2001,22(4):379-381
扭力驱动是自适应翼面驱动技术中的一个关键问题。将镍钛形状记忆合金 (Ni Ti SMA)丝与薄壁圆管相结合,可以构成 SMA扭力驱动器。介绍了 SMA扭力驱动器的构造,建立了扭力驱动器在激励过程中的力学模型,分析了驱动器的扭转角与温度之间的关系,并进行了实验验证。  相似文献   
863.
韦峰  张福恩  顾文锦  姚洪 《航空学报》1999,20(5):475-477
对 1 个二层的非线性模型进行了仿射型化,使块对角结构具有分层仿射型特点,提出了滑动模块对角控制器的设计方法,实现了飞航导弹的非线性控制系统的设计。仿真结果表明,这种设计方法对模型参数变化具有很强的鲁棒性。  相似文献   
864.
给出了作战效能分析的几种基本效能模型,并对目前广泛运用的WSEIAC模型进行了推广和适当的改进,改进后的效能模型具有时效性和全面性等特点,能更好地运用于实际。  相似文献   
865.
利用显示动力学有限元程序ANSYS/LS-DYNA模拟着靶速度为2.0Ma和2.5Ma的战斗部对多层间隔靶板侵彻的过程。结果表明:钛合金抗弹性能良好可作为战斗部的壳体材料;战斗部壳体结构强度满足侵彻需求。  相似文献   
866.
采用电子束物理气相沉积(EB-PVD)技术,成功制备了尺寸为150mm×100mm×0.4mm的TiAl/NiCoCrAl层板复合材料,并对其物相组成、断口形貌和室温力学性能与TiAl单层材料进行了对比分析.结果表明,在TiAl/NiCoCrAl层板复合材料中,NiCoCrAl层主要由Ni3Al和NiCrCo组成,TiAl层由γ相、α2相和т相组成且未发现TiAl单层材料中看到的分层现象;TiAl/NiCoCrAl层板复合材料的强度和韧性都要高于TiAl单层材料,其断裂方式由沿晶脆性断裂转变为具有一定延性的穿晶断裂和沿晶断裂的混合断裂方式.TiAl/NiCoCrAl层板复合材料的强化机制主要为细晶弥散强化;该材料的韧化机制主要为裂纹的偏转、微桥接和弯曲增韧.  相似文献   
867.
基于粗糙集-神经网络的机载设备故障诊断方法研究   总被引:2,自引:0,他引:2  
提出了一种基于粗糙集-神经网络的故障诊断方法。将粗糙集理论同神经网络结合起来可以用于机载设备的故障诊断。采用粗糙集理论对原始故障诊断样本进行处理,并根据条件属性对决策属性的正域的大小来选择条件属性,提取出对诊断故障贡献最大的最小故障特征集,从而确定神经网络的拓扑结构;通过训练神经网络建立故障特征与故障之间的映射关系,实现故障的诊断。通过A320飞机燃油系统的故障诊断仿真实例,表明这种故障诊断方法的有效性。  相似文献   
868.
基于神经网络逆控制的发动机直接推力控制   总被引:6,自引:3,他引:6       下载免费PDF全文
姚彦龙  孙健国 《推进技术》2008,29(2):249-252
首次将动态神经网络逆控制用于航空发动机直接推力控制。为了有效消除由于神经网络逆模型构造误差(即神经网络逆模型不可能完全逼近航空发动机的逆模型)而产生的稳态误差和解决航空发动机推力不易测量的困难,分别设计了积分补偿器和推力估计器,从而实现航空发动机直接推力控制。飞行包线内数字仿真结果表明,此控制方案具有良好的动静态性能、精度高、跟踪快。  相似文献   
869.
Compound ceramics coatings on the Ti-6Al-4V alloy were prepared by the direct current micro-plasma oxidation (MPO) in NaAlO2 solution. The composition and morphology of the coatings were studied with the X-ray diffraction (XRD) and the scanning electron microscopy (SEM), respectively. Inductively coupled plasma atomic emission spectrometer technique was used to analyze the solution features of Ti-6Al-4V alloy in the process of preparation. The results reveal that Al2TiO5 forms in the coatings at the initial stages of MPO reaction, and its content changes rapidly with the reaction continuing: after 20 min, the ceramics coatings are composed of α-Al2O3, γ-Al2O3 and Al2TiO5, but after 40 min, its main composition is of α-Al2O3. The content of Ti in the solution will increase when the MPO time extends, and as will Al in the anode area until, after 30 min, it reaches the maximum and keeps constant from then on. Both substrata of Ti and Al in the electrolyte join the MPO reaction at the initial stage, where the formation of Al2TiO5 happens; but as the MPO reaction prolongs, more and more Al in the electrolyte will take part in the reaction, leading to the appearance of a large amount of Al2O3.  相似文献   
870.
翼面隐身结构电磁散射特性的数值模拟   总被引:6,自引:8,他引:6  
隐身结构是指由蒙皮和多种内部材料组成的、能满足承载要求、并能明显降低雷达散射截面的结构。针对某无人侦察机隐身性能的要求,设计出两种低成本的翼面隐身结构方案。但由于隐身结构由多种媒质构成,其雷达散射截面(RCS)的计算和分析是个难题。应用时域有限差分法(FD-TD法)建立隐身结构电磁散射的数值模型,对两种低成本的翼面隐身结构方案的RCS进行了计算和比较分析。数值模拟结果表明,两种翼面隐身结构方案能有效降低翼面的RCS,并且翼面前、后缘和梁腹板之间填充的含有石墨的发泡聚苯乙烯对RCS值有很大影响。这一结论对隐身结构的优化设计具有指导意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号