首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18270篇
  免费   188篇
  国内免费   326篇
航空   10265篇
航天技术   5349篇
综合类   379篇
航天   2791篇
  2021年   168篇
  2018年   180篇
  2016年   165篇
  2014年   488篇
  2013年   571篇
  2012年   450篇
  2011年   612篇
  2010年   472篇
  2009年   826篇
  2008年   848篇
  2007年   399篇
  2006年   465篇
  2005年   397篇
  2004年   437篇
  2003年   510篇
  2002年   478篇
  2001年   568篇
  2000年   381篇
  1999年   501篇
  1998年   460篇
  1997年   342篇
  1996年   392篇
  1995年   452篇
  1994年   406篇
  1993年   390篇
  1992年   294篇
  1991年   276篇
  1990年   247篇
  1989年   385篇
  1988年   210篇
  1987年   236篇
  1986年   225篇
  1985年   634篇
  1984年   509篇
  1983年   397篇
  1982年   483篇
  1981年   609篇
  1980年   243篇
  1979年   184篇
  1978年   189篇
  1977年   144篇
  1976年   156篇
  1975年   184篇
  1974年   181篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   143篇
  1969年   147篇
  1967年   142篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
961.
Solar modulations of galactic cosmic ray (GCR) intensity contain a wealth of information about their transport in the heliosphere. To extract this information from the data one studies the dependence of the observed modulations on the mean energy of response of detectors providing data for the analyses. There is a great deal of confusion about the detector energy response to GCR spectrum in the literature. We present a preliminary report on the computations of the mean energy of response for the Climax neutron monitor (CL/NM) and IMP 8 cosmic ray nuclear composition instrument to GCR protons for 1973–1998, covering the solar cycles 21 and 22. We find that for penetrating proton channel on IMP 8 the mean energy changes by a factor of over two whereas for the neutron monitor the change is only 21%. However, the corresponding change for the computed modulation function is a factor of about 3.5.  相似文献   
962.
In accordance with the United Nations Outer Space Treaties [United Nations, Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, UN doc A/RES/34/68, resolution 38/68 of December 1979], currently maintained and promulgated by the Committee on Space Research [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], missions exploring the Solar system must meet planetary protection requirements. Planetary protection aims to protect celestial bodies from terrestrial contamination and to protect the Earth environment from potential biological contamination carried by returned samples or space systems that have been in contact with an extraterrestrial environment. From an exobiology perspective, Mars is one of the major targets, and several missions are currently in operation, in transit, or scheduled for its exploration. Some of them include payloads dedicated to the detection of life or traces of life. The next step, over the coming years, will be to return samples from Mars to Earth, with a view to increasing our knowledge in preparation for the first manned mission that is likely to take place within the next few decades. Robotic missions to Mars shall meet planetary protection specifications, currently well documented, and planetary protection programs are implemented in a very reliable manner given that experience in the field spans some 40 years. With regards to sample return missions, a set of stringent requirements has been approved by COSPAR [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], and technical challenges must now be overcome in order to preserve the Earth’s biosphere from any eventual contamination risk. In addition to the human dimension of the mission, sending astronauts to Mars will entail meeting all these constraints. Astronauts present huge sources of contamination for Mars and are also potential carriers of biohazardous material on their return to Earth. If they were to have the misfortune of being contaminated, they themselves would become a biohazard, and, as a consequence, in addition to the technical constraints, human and ethical considerations must also be taken into account.  相似文献   
963.
The main purposes of experiment “Obstanovka” (“Environment” in Russian) consisting of several instruments are to measure a set of electromagnetic and plasma phenomena characterizing the space weather conditions, and to evaluate how such a big and highly energy consuming body as the International Space Station disturbs the surrounding plasma, and how the station itself is charged due to the operation of so many instruments, solar batteries, life supporting devices, etc. Two identical Langmuir electrostatic probes are included in the experiment “Obstanovka”. In this paper the Langmuir probes for “Obstanovka” experiment are described, including the choice of geometry (spherical or cylindrical), a more reliable method for the sweep voltage generation, an adaptive algorithm for the probe’s operation. Special attention is paid to the possibility for remote upgrading of the instrument from the ground using the standard communication channels.  相似文献   
964.
Adequate representations of diverse dynamical processes in general circulation models (GCM) are necessary to obtain reliable simulations of the present and the future. The parameterization of orographic gravity wave drag (GWD) is one of the critical components of GCM. It is therefore convenient to evaluate whether standard orographic GWD parameterizations are appropriate. One alternative is to study the generation of gravity waves (GW) with horizontal resolutions that are higher than those used in current GCM simulations. Here we assess the seasonal pattern of topographic GW momentum flux (GWMF) generation for the late 20th and 21st centuries in a downscaling using the Rossby Centre regional atmospheric model under the Intergovernmental Panel on Climate Change A1B emission conditions. We focus on one of the world’s strongest extra-tropical GW zones, the Andes Mountains at mid-latitudes in the Southern Hemisphere. The presence of two GCM sub-grid scale structures locally contributing to GWMF (one positive and one negative) is found to the East of the mountains. For the late 21st century the strength of these structures during the GW high season increases around 23% with respect to the late 20th century, but the GWMF average over GCM grid cell scales remains negative and nearly constant around −0.015 Pa. This constitutes a steady significant contribution during GW high season, which is not related to the GWMF released by individual sporadic strong GW events. This characteristic agrees with the fact that no statistically significant variation in GWMF at source level has been observed in recent GCM simulations of atmospheric change induced by increases in greenhouse gases.  相似文献   
965.
The occurrence of mid-latitude spread F (SF) over South Africa has not been extensively studied since the installation of the DPS-4 digisondes in 1996 and 2000 at Grahamstown (33.32 °S, 26.50 °E) and Madimbo (22.38 °S, 30.88 °E) respectively. This study is intended to quantify the probability of occurrence of F region disturbances associated with SF over South Africa. A study was conducted using data for 8 years (2001–2008) over Madimbo (with a time resolution of 30 min) and Grahamstown (with a variable time resolution of 15 and 30 min). In this study, SF has been classified into frequency SF (FSF), range SF (RSF) and mixed SF (MSF). The SF events were identified by manually identifying ionograms showing SF and tabulating them according to type for further statistical analysis. The results show that the diurnal pattern of SF peaks strongly between 01:00 and 02:00 local time, LT (LT = UT + 2 h), where UT is the universal time. This pattern is true for all seasons and types of SF at Madimbo and Grahamstown in 2001 and 2005, except for RSF which had peaks during autumn and spring in 2001 at Madimbo. The probability of both MSF and FSF tends to increase with decreasing solar activity, with a peak in 2005 (a moderate solar activity period). The seasonal peaks of MSF and FSF are more frequent during winter months at both Madimbo and Grahamstown. In this study, SF was evident in ∼0.03% and ∼0.06% of the available ionograms at Madimbo and Grahamstown respectively during the 8 years.  相似文献   
966.
运用不同减水剂和早强剂配制高性能混凝土(High performance concrete,HPC),测定其工作性、标准养护强度和蒸汽养护强度,研究了HPC的外加剂选用原则。结果表明,掺加聚缩酸系高效减水剂有利于HPC获得高工作性和高强度。硫酸钠早强剂将导致工作性不好,强度降低。对于蒸汽养护的HPC制品,应该优先采用硫酸钠含量低的萘系高效减水剂。因此,HPC外加剂的选择应该考虑养护条件的差异。  相似文献   
967.
金属间化合物TiAl(W,Si)合金的蠕变行为和机制   总被引:1,自引:0,他引:1  
 研究了 Ti-47Al-2 W-0.5 Si合金在 650~ 750℃区间的蠕变行为和变形机制。结果表明,合金 650℃蠕变寿命与施加应力之间符合线性的双对数关系,可用表达式 lgtf=10 lgR+30来描述。蠕变寿命与最小蠕变速率之间满足 Monkman-Grant关系的修正式。合金的比蠕变强度与抗热腐蚀镍基高温合金 K438G相当。在700℃变载荷下蠕变时具有与恒载荷下蠕变相类似的特征。 800℃长期时效粗化合金组织,降低蠕变寿命。位错滑移和形变孪生是合金蠕变的主要变形机制。  相似文献   
968.
Tracking multiple objects with particle filtering   总被引:8,自引:0,他引:8  
We address the problem of multitarget tracking (MTT) encountered in many situations in signal or image processing. We consider stochastic dynamic systems detected by observation processes. The difficulty lies in the fact that the estimation of the states requires the assignment of the observations to the multiple targets. We propose an extension of the classical particle filter where the stochastic vector of assignment is estimated by a Gibbs sampler. This algorithm is used to estimate the trajectories of multiple targets from their noisy bearings, thus showing its ability to solve the data association problem. Moreover this algorithm is easily extended to multireceiver observations where the receivers can produce measurements of various nature with different frequencies.  相似文献   
969.
970.
陈军  郑亚  王政时  鞠玉涛 《推进技术》2003,24(2):172-174,185
研究了采用二次点火发动机对火箭弹进行增程的最优设计方法与设计原理,用罚函数法把约束条件构成统一的目标函数,再用直接寻优法进行计算,分析了火箭弹倾角、再点火时间及总冲分配等因素对射程的影响。结果表明,二次点火发动机技术可以实现远程火箭弹增程最大的设计要求,且最优发射角对射程影响极大;总冲分配最佳时,总的阻力消耗最小,增程率越大;再点火时间的影响相对较弱。同时还比较了二次点火发动机工作时的火箭弹弹道与一般弹道的区别,及其对阻力和射程的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号