首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1205篇
  免费   17篇
  国内免费   4篇
航空   573篇
航天技术   504篇
综合类   16篇
航天   133篇
  2022年   5篇
  2021年   12篇
  2019年   10篇
  2018年   14篇
  2017年   6篇
  2016年   10篇
  2015年   5篇
  2014年   24篇
  2013年   23篇
  2012年   35篇
  2011年   48篇
  2010年   33篇
  2009年   57篇
  2008年   97篇
  2007年   29篇
  2006年   31篇
  2005年   46篇
  2004年   38篇
  2003年   36篇
  2002年   25篇
  2001年   51篇
  2000年   21篇
  1999年   36篇
  1998年   39篇
  1997年   20篇
  1996年   34篇
  1995年   21篇
  1994年   38篇
  1993年   25篇
  1992年   35篇
  1991年   11篇
  1990年   14篇
  1989年   39篇
  1988年   13篇
  1987年   6篇
  1986年   12篇
  1985年   33篇
  1984年   31篇
  1983年   22篇
  1982年   21篇
  1981年   33篇
  1980年   6篇
  1979年   10篇
  1978年   11篇
  1977年   9篇
  1976年   8篇
  1975年   8篇
  1971年   5篇
  1969年   5篇
  1968年   4篇
排序方式: 共有1226条查询结果,搜索用时 876 毫秒
301.
Curiosity’s Mars Hand Lens Imager (MAHLI) Investigation   总被引:1,自引:0,他引:1  
The Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) investigation will use a 2-megapixel color camera with a focusable macro lens aboard the rover, Curiosity, to investigate the stratigraphy and grain-scale texture, structure, mineralogy, and morphology of geologic materials in northwestern Gale crater. Of particular interest is the stratigraphic record of a ~5?km thick layered rock sequence exposed on the slopes of Aeolis Mons (also known as Mount Sharp). The instrument consists of three parts, a?camera head mounted on the turret at the end of a robotic arm, an electronics and data storage assembly located inside the rover body, and a calibration target mounted on the robotic arm shoulder azimuth actuator housing. MAHLI can acquire in-focus images at working distances from ~2.1?cm to infinity. At the minimum working distance, image pixel scale is ~14?μm per pixel and very coarse silt grains can be resolved. At the working distance of the Mars Exploration Rover Microscopic Imager cameras aboard Spirit and Opportunity, MAHLI’s resolution is comparable at ~30?μm per pixel. Onboard capabilities include autofocus, auto-exposure, sub-framing, video imaging, Bayer pattern color interpolation, lossy and lossless compression, focus merging of up to 8 focus stack images, white light and longwave ultraviolet (365 nm) illumination of nearby subjects, and 8 gigabytes of non-volatile memory data storage.  相似文献   
302.
The magnetic field experiment on WIND will provide data for studies of a broad range of scales of structures and fluctuation characteristics of the interplanetary magnetic field throughout the mission, and, where appropriate, relate them to the statics and dynamics of the magnetosphere. The basic instrument of the Magnetic Field Investigation (MFI) is a boom-mounted dual triaxial fluxgate magnetometer and associated electronics. The dual configuration provides redundancy and also permits accurate removal of the dipolar portion of the spacecraft magnetic field. The instrument provides (1) near real-time data at nominally one vector per 92 s as key parameter data for broad dissemination, (2) rapid data at 10.9 vectors s–1 for standard analysis, and (3) occasionally, snapshot (SS) memory data and Fast Fourier Transform data (FFT), both based on 44 vectors s–1. These measurements will be precise (0.025%), accurate, ultra-sensitive (0.008 nT/step quantization), and where the sensor noise level is <0.006 nT r.m.s. for 0–10 Hz. The digital processing unit utilizes a 12-bit microprocessor controlled analogue-to-digital converter. The instrument features a very wide dynamic range of measurement capability, from ±4 nT up to ±65 536 nT per axis in eight discrete ranges. (The upper range permits complete testing in the Earth's field.) In the FTT mode power spectral density elements are transmitted to the ground as fast as once every 23 s (high rate), and 2.7 min of SS memory time series data, triggered automatically by pre-set command, requires typically about 5.1 hours for transmission. Standard data products are expected to be the following vector field averages: 0.0227-s (detail data from SS), 0.092 s (detail in standard mode), 3 s, 1 min, and 1 hour, in both GSE and GSM coordinates, as well as the FFT spectral elements. As has been our team's tradition, high instrument reliability is obtained by the use of fully redundant systems and extremely conservative designs. We plan studies of the solar wind: (1) as a collisionless plasma laboratory, at all time scales, macro, meso and micro, but concentrating on the kinetic scale, the highest time resolution of the instrument (=0.022 s), (2) as a consequence of solar energy and mass output, (3) as an external source of plasma that can couple mass, momentum, and energy to the Earth's magnetosphere, and (4) as it is modified as a consequence of its imbedded field interacting with the moon. Since the GEOTAIL Inboard Magnetometer (GIM), which is similar to the MFI instrument, was developed by members of our team, we provide a brief discussion of GIM related science objectives, along with MFI related science goals.  相似文献   
303.
高歌  熊焰 《航空动力学报》1996,11(4):401-405,439
TRANSITIONSIMULATIONUSINGGLM-EMBASEDCLOSEDEQUATIONSOFTURBULENCEGaoGe(4thDept.BeijingUniversityofAeronauticsandAstronautics,Be...  相似文献   
304.
305.
We report results from EXOSAT observations of the intermediate polar system 2A0526-328 (TV Col). The hard X-ray emission (2–8 keV) is modulated with a period of 1943 s, interpreted as the white-dwarf rotation period. Soft and hard X-ray emission show intensity minima, in phase with the orbital period of 0.2286 days; analysis of the hard X-ray spectra shows that these minima are caused by an extra low-energy absorption corresponding to a H column density of 4 × 1022 cm-2.  相似文献   
306.
Observations of plasma and magnetic fields by Pioneer 10 and 11 and Voyager 1 and 2 reveal that MHD shocks are an important component of the large-scale solar wind structures in the outer heliosphere. This review discusses recent progress in simulation studies of the nonlinear evolution of the solar wind structures, and in particular concentrates on the theoretical development and applications of the shock interactions model. Various stream propagation models, which do not use the Rankine-Hugoniot relations to calculate the jump conditions at shock crossings, have been used to simulate the essential evolution process of isolated streams and the formation and propagation of corotating and transient shocks. They produce fairly good results in the region up to a few AU. In 1984, the shock interactions model was introduced to study the evolution of large-scale solar wind structures in the region outside 1 AU up to several tens of AU. The model uses the exact Rankine-Hugoniot relations to calculate the shock speed and shock strength at all shock crossings. So that the model can more accurately calculate the shock speeds and the accumulated irreversible shock heating of plasma at several tens of AU. The applications of the shock interactions model are presented in three groups. (a) The first group covers the basic interaction of a shock with the ambient solar wind, the formation and propagation of shock pairs, and the collision and merging of shocks. (b) The second group covers the use of the shock interactions model to simulate the nonlinear evolution of large-scale solar wind structures in the outer heliosphere. These simulation results can provide the detailed evolution process for large-scale solar wind structures in the vast region not directly observed. Two selected studies are reported. (c) Finally, the shock interactions model is applied to studying the heating of the solar wind in the outer heliosphere. The model calculations support shocks being chiefly responsible for the heating of the solar wind plasma in the outer heliosphere at least up to 30 AU.  相似文献   
307.
A knowledge-based system for air traffic control (ATC) in terminal control regions is designed for improving service and operation. Domain knowledge is established following rules, regulations, and comments from controllers. An expert system is adopted for approach control and airport control in the terminal control region. The proposed system was implemented in PC-AT with Turbo Prolog. The air terminal control monitor was checked with regard to flight information input, real-time data refreshment, air traffic rescheduling, constraint violation double checking, emergency responses, and normal monitoring. Simulation results are given  相似文献   
308.
Book reviews     
Space Science Reviews -  相似文献   
309.
Scanning Spaceborne Synthetic Aperture Radar with Integrated Radiometer   总被引:1,自引:0,他引:1  
Spaceborne synthetic aperture radar systems are severely constrained to a narrow swath by ambiguity limitations. Here a vertically scanned-beam synthetic aperture system (SCANSAR) is proposed as a solution to this problem. The potential length of synthetic aperture must be shared between beam positions, so the along-track resolution is poorer; a direct tradeoff exists between resolution and swath width. The length of the real aperture is independently traded against the number of scanning positions. Design curves and equations are presented for spaceborne SCANSARs for altitudes between 400 and 1400 km and inner angles of incidence between 20° and 40°. When the real antenna is approximately square, it may also be used for a microwave radiometer. The combined radiometer and synthetic-aperture (RADISAR) should be useful for those applications where the poorer resolution of the radiometer is useful for some purposes, but the finer resolution of the radar is needed for others.  相似文献   
310.
Using data from the Mars Express Ion Mass Analyzer (IMA) we investigate the distribution of ion beams of planetary origin and search for an influence from Mars crustal magnetic anomalies. We have concentrated on ion beams observed inside the induced magnetosphere boundary (magnetic pile-up boundary). Some north-south asymmetry is seen in the data, but no longitudinal structure resembling that of the crustal anomalies. Comparing the occurrence rate of ion beams with magnetic field strength at 400 km altitude below the spacecraft (using statistical Mars Global Surveyor results) shows a decrease of the occurrence rate for modest (< 40 nT) magnetic fields. Higher magnetic field regions (above 40 nT at 400 km) are sampled so seldom that the statistics are poor but the data is consistent with some ion outflow events being closely associated with the stronger anomalies. This ion flow does not significantly affect the overall distribution of ion beams around Mars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号