首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1058篇
  免费   21篇
  国内免费   3篇
航空   478篇
航天技术   472篇
综合类   15篇
航天   117篇
  2022年   6篇
  2021年   12篇
  2019年   7篇
  2018年   10篇
  2017年   4篇
  2016年   11篇
  2015年   5篇
  2014年   22篇
  2013年   22篇
  2012年   31篇
  2011年   43篇
  2010年   28篇
  2009年   49篇
  2008年   94篇
  2007年   26篇
  2006年   28篇
  2005年   45篇
  2004年   36篇
  2003年   30篇
  2002年   25篇
  2001年   50篇
  2000年   19篇
  1999年   35篇
  1998年   36篇
  1997年   13篇
  1996年   32篇
  1995年   20篇
  1994年   33篇
  1993年   21篇
  1992年   29篇
  1991年   10篇
  1990年   14篇
  1989年   31篇
  1988年   14篇
  1987年   6篇
  1986年   12篇
  1985年   19篇
  1984年   27篇
  1983年   22篇
  1982年   22篇
  1981年   24篇
  1980年   6篇
  1979年   8篇
  1978年   6篇
  1977年   7篇
  1976年   5篇
  1975年   6篇
  1974年   3篇
  1970年   3篇
  1969年   4篇
排序方式: 共有1082条查询结果,搜索用时 15 毫秒
621.
TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) is the first Synthetic Aperture Radar (SAR) mission using close formation flying for bistatic SAR interferometry. The primary goal of the mission is to generate a global digital elevation model (DEM) with 2 m height precision and 10 m ground resolution from the configurable SAR interferometer with space baselines of a few hundred meters. As a key mission requirement for the interferometric SAR processing, the relative position, or baseline vector, of the two satellites must be determined with an accuracy of 1 mm (1D RMS) from GPS measurements collected by the onboard receivers. The operational baseline products for the TanDEM-X mission are routinely generated by the German Research Center for Geosciences (GFZ) and the German Space Operations Center (DLR/GSOC) using different software packages (EPOS/BSW, GHOST) and analysis strategies. For a further independent performance assessment, TanDEM-X baseline solutions are generated at the Astronomical Institute of the University of Bern (AIUB) on a best effort basis using the Bernese Software (BSW).  相似文献   
622.
During the August 25, 2018 geomagnetic storm, the new borne CSES-01 satellite and the Swarm A satellite detected a really large equatorial plasma bubble (EPB) in the post-midnight sector over western Africa. We investigated the features of this deep ionospheric plasma depletion using data from the Langmuir probes on-board CSES-01 and Swarm A satellites, and data from the high-precision magnetometer and the electric field detector instruments on-board CSES-01. Using also plasma and magnetic field data from THEMIS-E satellite we found that, during the passage of the magnetic cloud that drove the geomagnetic storm, an impulsive variation lasting about ten minutes characterized the solar wind (SW) pressure. The analysis of the delay time, between the occurrence of such impulsive variation and the detection of the plasma bubble, suggests a possible link between the SW pressure impulsive variation as identified by THEMIS-E and the generation of the EPB as detected by CSES-01 and Swarm A. We put forward the hypothesis that the SW pressure impulsive variation might have triggered an eastward prompt penetrating electric field that propagated from high to equatorial latitudes, overlapping in the nightside region to the zonal westward electric field, causing either a reduction or an inversion, at the base of the EPB triggering.  相似文献   
623.
Global Navigation Satellite System (GNSS) radio occultation (RO) is an innovative meteorological remote sensing technique for measuring atmospheric parameters such as refractivity, temperature, water vapour and pressure for the improvement of numerical weather prediction (NWP) and global climate monitoring (GCM). GNSS RO has many unique characteristics including global coverage, long-term stability of observations, as well as high accuracy and high vertical resolution of the derived atmospheric profiles. One of the main error sources in GNSS RO observations that significantly affect the accuracy of the derived atmospheric parameters in the stratosphere is the ionospheric error. In order to mitigate the effect of this error, the linear ionospheric correction approach for dual-frequency GNSS RO observations is commonly used. However, the residual ionospheric errors (RIEs) can be still significant, especially when large ionospheric disturbances occur and prevail such as during the periods of active space weather. In this study, the RIEs were investigated under different local time, propagation direction and solar activity conditions and their effects on RO bending angles are characterised using end-to-end simulations. A three-step simulation study was designed to investigate the characteristics of the RIEs through comparing the bending angles with and without the effects of the RIEs. This research forms an important step forward in improving the accuracy of the atmospheric profiles derived from the GNSS RO technique.  相似文献   
624.
Coronal holes can produce several types of solar wind with a variety of compositional properties, depending on the location and strength of the heating along their open magnetic field lines. High-speed wind is associated with (relatively) slowly diverging flux tubes rooted in the interiors of large holes with weak, uniform footpoint fields; heating is spread over a large radial distance, so that most of the energy is conducted outward and goes into accelerating the wind rather than increasing the mass flux. In the rapidly diverging open fields present at coronal hole boundaries and around active regions, the heating is concentrated at low heights and the temperature maximum is located near the coronal base, resulting in high oxygen freezing-in temperatures and low asymptotic wind speeds. Polar plumes have a strong additional source of heating at their bases, which generates a large downward conductive flux, raising the densities and enhancing the radiative losses. The relative constancy of the solar wind mass flux at Earth reflects the tendency for the heating rate in coronal holes to increase monotonically with the footpoint field strength, with very high mass fluxes at the Sun offsetting the enormous flux-tube expansion in active region holes. Although coronal holes are its main source, slow wind is also released continually from helmet streamer loops by reconnection processes, giving rise to plasma blobs (small flux ropes) and the heliospheric plasma sheet.  相似文献   
625.
The effects of real and simulated microgravity on the eye tissue regeneration of newts were investigated. For the first time changes in Müller glial cells in the retina of eyes regenerating after retinal detachment were detected in newts exposed to clinorotation. The cells divided, were hypertrophied, and their processes were thickened. Such changes suggested reactive gliosis and were more significant in animals exposed to rotation when compared with desk-top controls. Later experiments onboard the Russian biosatellite Bion-11 showed similar changes in the retinas that were regenerating in a two-week spaceflight. In the Bion-11 animals, GFAP, the major structural protein of retinal macroglial cells, was found to be upregulated. In a more recent experiment onboard Foton-M3 (2007), GFAP expression in retinas of space-flown, ground control (kept at 1 g), and basal control (sacrificed on launch day) newts was quantified, using microscopy, immunohistochemistry, and digital image analysis. A low level of immunoreactivity was observed in basal controls. In contrast, retinas of space-flown animals showed greater GFAP immunoreactivity associated with both an increased cell number and a higher thickness of intermediate filaments. This, in turn, was accompanied by up-regulation of stress protein (HSP90) and growth factor (FGF2) expressions. It can be postulated that such a response of Müller cells was to mitigate the retinal stress in newts exposed to microgravity. Taken together, the data suggest that the retinal population of macroglial cells could be sensitive to gravity changes and that in space it can react by enhancing its neuroprotective function.  相似文献   
626.
The long-term (solar cycle) changes in the Sun and how it affects the ionospheric F-region observed at São José dos Campos (23.2° S, 45.9° W), Brazil, a location under the southern crest of the equatorial ionospheric anomaly, have been investigated in this paper. The dependence of the F-region peak electron density (foF2) on solar activity during the descending phase of the 23rd solar cycle for the periods of high, medium, and low solar activity has been studied. The ionospheric F-region peak electron densities observed during high and medium solar activity show seasonal variations with maxima close to the equinox periods, whereas during the low solar activity the maxima during the equinox periods is absent. However, during the low solar activity only change observed is a large decrease from summer to winter months. We have further investigated changes in the different ionospheric F-region parameters (minimum virtual height of the F-region (h′F), virtual height at 0.834foF2 (hpF2), and foF2) during summer to winter months in low solar activity periods, 2006–2007 and 2007–2008. Large changes in the two ionospheric parameters (hpF2 and foF2) are observed during summer to winter months in the two low solar activity periods investigated.  相似文献   
627.
628.
Output current of silicon solar cells of Akebono satellite orbiting in the inner magnetosphere decreased from 13 A in 1989 to about 7 A in 2009, due to accumulated damage by energetic particles. A fair correlation between the monthly decrease rate of solar cell output current and trapped proton flux was found between 1989 and 1992, indicating that trapped energetic protons are responsible for the solar cell degradation. Simple variation from month to month was dominated by a fluctuation with one-year period and the correlation was not discernible after 1993. On the other hand, during orbiting the earth, another kind of decrease of output current emerged at low altitude above the sub-solar point, i.e., in the midst of sunlit condition. The decrease was larger in later years. The fact indicates more prominent temperature effect in the later years because of progress of the degradation. By removing data affected by the orbit condition above, variation from the same month in the previous year shows a clear oscillation due to orbit precession correlated with trapped energetic proton flux up to 1996. The amplitude of the annual variation oscillation tends to be larger than that expected from a degradation model based on energetic proton distribution of the NASA’s AP8 model. The larger oscillation amplitude suggests that the proton radiation belt was more sharply localized than given by the AP8 model throughout the early half of 1990s.  相似文献   
629.
In this paper, we have investigated the responses of the ionospheric F region at equatorial and low latitude regions in the Brazilian sector during the super geomagnetic storm on 15–16 May 2005. The geomagnetic storm reached a minimum Dst of −263 nT at 0900 UT on 15 May. In this paper, we present vertical total electron content (vTEC) and phase fluctuations (in TECU/min) from Global Positioning System (GPS) observations obtained at Belém, Brasília, Presidente Prudente, and Porto Alegre, Brazil, during the period 14–17 May 2005. Also, we present ionospheric parameters h’F, hpF2, and foF2, using the Canadian Advanced Digital Ionosonde (CADI) obtained at Palmas and São José dos Campos, Brazil, for the same period. The super geomagnetic storm has fast decrease in the Dst index soon after SSC at 0239 UT on 15 May. It is a good possibility of prompt penetration of electric field of magnetospheric origin resulting in uplifting of the F region. The vTEC observations show a trough at BELE and a crest above UEPP, soon after SSC, indicating strengthening of nighttime equatorial anomaly. During the daytime on 15 and 16 May, in the recovery phase, the variations in foF2 at SJC and the vTEC observations, particularly at BRAZ, UEPP, and POAL, show large positive ionospheric storm. There is ESF on the all nights at PAL, in the post-midnight (UT) sector, and phase fluctuations only on the night of 14–15 May at BRAZ, after the SSC. No phase fluctuations are observed at the equatorial station BELE and low latitude stations (BRAZ, UEPP, and POAL) at all other times. This indicates that the plasma bubbles are generated and confined on this magnetically disturbed night only up to the low magnetic latitude and drifted possibly to west.  相似文献   
630.
The GRAS radio occultation instrument is flying on Metop-A and belongs to the EPS (EUMETSAT Polar System). GRAS observes GPS satellites in occultation. Within this work, validation of GRAS closed-loop bending angle data against co-located ECMWF profiles extracted from model fields and occultations from the COSMIC constellation of radio occultation instruments is shown. Results confirm the high data quality and robustness, where GRAS shows lower bending angle noise against ECMWF than COSMIC and in terms of occultations per day, one GRAS ≈ two COSMIC satellites. This is partly due to the operational setup of EPS. For the investigation we focus on two observation periods where updates in the ECMWF (March 2009) and COSMIC processing (October 2009) have improved the statistics further. Bending angles biases agree to within 0.5% against ECMWF and to within 0.1% against COSMIC after the updates for altitudes between 8 and 40 km. In addition, we also analyze the impact of the Metop orbit processing on the derived GRAS bending angle data, where different GPS and Metop orbit solutions are analyzed. Results show that a batch based orbit processing would improve in particular the bending angle bias behavior at higher altitudes. Requirements for the operational processing of GRAS data are briefly outlined, options to ease the use of other positioning system satellites in the near future are discussed. A simplified analysis on the observation of several of these systems, e.g. GPS and Galileo, from one platform shows that about 16% of occultations are found within 300 km, ±3 h, thus providing similar information. A constellation of 2 GRAS like instruments would have only about 10% close-by.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号