首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1055篇
  免费   17篇
  国内免费   3篇
航空   477篇
航天技术   466篇
综合类   15篇
航天   117篇
  2022年   5篇
  2021年   12篇
  2019年   7篇
  2018年   9篇
  2017年   4篇
  2016年   10篇
  2015年   5篇
  2014年   22篇
  2013年   21篇
  2012年   31篇
  2011年   43篇
  2010年   28篇
  2009年   49篇
  2008年   94篇
  2007年   26篇
  2006年   28篇
  2005年   45篇
  2004年   36篇
  2003年   30篇
  2002年   25篇
  2001年   50篇
  2000年   19篇
  1999年   35篇
  1998年   36篇
  1997年   13篇
  1996年   32篇
  1995年   20篇
  1994年   33篇
  1993年   21篇
  1992年   29篇
  1991年   10篇
  1990年   14篇
  1989年   31篇
  1988年   13篇
  1987年   6篇
  1986年   12篇
  1985年   19篇
  1984年   27篇
  1983年   22篇
  1982年   20篇
  1981年   24篇
  1980年   6篇
  1979年   8篇
  1978年   6篇
  1977年   7篇
  1976年   5篇
  1975年   6篇
  1974年   3篇
  1970年   3篇
  1969年   4篇
排序方式: 共有1075条查询结果,搜索用时 828 毫秒
841.
The Radiation Assessment Detector (RAD) Investigation   总被引:1,自引:0,他引:1  
The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) is an energetic particle detector designed to measure a broad spectrum of energetic particle radiation. It will make the first-ever direct radiation measurements on the surface of Mars, detecting galactic cosmic rays, solar energetic particles, secondary neutrons, and other secondary particles created both in the atmosphere and in the Martian regolith. The radiation environment on Mars, both past and present, may have implications for habitability and the ability to sustain life. Radiation exposure is also a major concern for future human missions. The RAD instrument combines charged- and neutral-particle detection capability over a wide dynamic range in a compact, low-mass, low-power instrument. These capabilities are required in order to measure all the important components of the radiation environment. RAD consists of the RAD Sensor Head (RSH) and the RAD Electronics Box (REB) integrated together in a small, compact volume. The RSH contains a solid-state detector telescope with three silicon PIN diodes for charged particle detection, a thallium doped Cesium Iodide scintillator, plastic scintillators for neutron detection and anti-coincidence shielding, and the front-end electronics. The REB contains three circuit boards, one with a novel mixed-signal ASIC for processing analog signals and an associated control FPGA, another with a second FPGA to communicate with the rover and perform onboard analysis of science data, and a third board with power supplies and power cycling or “sleep”-control electronics. The latter enables autonomous operation, independent of commands from the rover. RAD is a highly capable and highly configurable instrument that paves the way for future compact energetic particle detectors in space.  相似文献   
842.
Asteroid 4 Vesta is the only preserved intact example of a large, differentiated protoplanet like those believed to be the building blocks of terrestrial planet accretion. Vesta accreted rapidly from the solar nebula in the inner asteroid belt and likely melted due to heat released due to the decay of 26Al. Analyses of meteorites from the howardite-eucrite-diogenite (HED) suite, which have been both spectroscopically and dynamically linked to Vesta, lead to a model of the asteroid with a basaltic crust that overlies a depleted peridotitic mantle and an iron core. Vesta??s crust may become more mafic with depth and might have been intruded by plutons arising from mantle melting. Constraints on the asteroid??s moments of inertia from the long-wavelength gravity field, pole position and rotation, informed by bulk composition estimates, allow tradeoffs between mantle density and core size; cores of up to half the planetary radius can be consistent with plausible mantle compositions. The asteroid??s present surface is expected to consist of widespread volcanic terrain, modified extensively by impacts that exposed the underlying crust or possibly the mantle. Hemispheric heterogeneity has been observed by poorly resolved imaging of the surface that suggests the possibility of a physiographic dichotomy as occurs on other terrestrial planets. Vesta might have had an early magma ocean but details of the early thermal structure are far from clear owing to model uncertainties and paradoxical observations from the HEDs. Petrological analysis of the eucrites coupled with thermal evolution modeling recognizes two possible mechanisms of silicate-metal differentiation leading to the formation of the basaltic achondrites: equilibrium partial melting or crystallization of residual liquid from the cooling magma ocean. A firmer understanding the plethora of complex physical and chemical processes that contribute to melting and crystallization will ultimately be required to distinguish among these possibilities. The most prominent physiographic feature on Vesta is the massive south polar basin, whose formation likely re-oriented the body axis of the asteroid??s rotation. The large impact represents the likely major mechanism of ejection of fragments that became the HEDs. Observations from the Dawn mission hold the promise of revolutionizing our understanding of 4 Vesta, and by extension, the nature of collisional, melting and differentiation processes in the nascent solar system.  相似文献   
843.
The balloon-borne cosmic-ray experiment CREAM-I (Cosmic-Ray Energetics And Mass) recently completed a successful 42-day flight during the 2004–2005 NASA/NSF/NSBF Antarctic expedition. CREAM-I combines an imaging calorimeter with charge detectors and a precision transition radiation detector (TRD). The TRD component of CREAM-I is targeted at measuring the energy of cosmic-ray particles with charges greater than Z ∼ 3. A central science goal of this effort is the determination of the ratio of secondary to primary nuclei at high energy. This measurement is crucial for the reconstruction of the propagation history of cosmic rays, and consequently for the determination of their source spectra. First scientific results from this instrument are presented.  相似文献   
844.
Cosmic-ray electrons have been observed in the energy region from 10 GeV to 1 TeV with the PPB-BETS by a long duration balloon flight using a Polar Patrol Balloon (PPB) in Antarctica. The observation was carried out for 13 days at an average altitude of 35 km in January 2004. The PPB-BETS detector is an imaging calorimeter composed of scintillating-fiber belts and plastic scintillators inserted between lead plates. In the study of cosmic-ray electrons, there have been some suggestions that high-energy electrons above 100 GeV are a powerful probe to identify nearby cosmic-ray sources and search for particle dark matter. In this paper, we present the energy spectrum of cosmic-ray electrons in the energy range from 100 GeV to 1 TeV at the top of atmosphere, and compare our spectrum with the results from other experiments.  相似文献   
845.
The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) has been carried out to search for primordial antiparticles in cosmic rays. In ten flights from 1993 to 2004, it measured the cosmic-ray antiproton spectrum in the energy range 0.1–4.2 GeV at various solar activity conditions. It also searched for antideuterons and antihelium nuclei, and it made precise measurement of cosmic-ray particle spectra. The BESS program has been extended to long duration balloon (LDB) flights in Antarctica (BESS-Polar) with the goal of achieving unprecedented sensitivity in the search for primordial antiparticles. This report describes recent results from BESS and progress of the BESS-Polar program.  相似文献   
846.
In this paper, we report searches for antihelium in cosmic rays using two recently flown magnetic rigidity spectrometers. BESS-TeV had extended rigidity with an MDR of 1.4 TV and had a flight duration of one day. BESS-Polar was optimized for collecting power. It was flown for 8.5 days and had an MDR of 240 GV. The former flight allows us to explore a previously unexplored rigidity band and the latter flight yields a factor of three improvement in the overall BESS limit. No antihelium candidate was found in the rigidity ranges of 1–500 GV, and 0.6–20 GV, among 7 × 104 events taken with BESS-TeV, and 8 × 106 events taken with BESS-Polar, respectively.  相似文献   
847.
To understand the evolution of organic molecules involved in extraterrestrial environments and with exobiological implications, many experimental programs in the laboratory are devoted to photochemical studies in the gaseous phase as well as in the solid state. The validity of such studies and their applications to extraterrestrial environments can be questioned as long as experiments conducted in space conditions, with the full solar spectrum, especially in the short wavelength domain, have not been implemented. The experiments that are described here will be carried out on a FOTON capsule, using the BIOPAN facility, and on the International Space Station, using the EXPOSE facility. Vented and sealed exposition cells will be used, which will allow us to study the chemical evolution in the gaseous phase as well as heterogeneous processes, such as the degradation of solid compounds and the release of gaseous fragments.  相似文献   
848.
Energetic oxygen ion flux intensifications were observed by the HEP/LD instrument on board the GEOTAIL satellite thoughout the Bz negative phase of the CME event on January 10, 1997. At this time, the spacecraft was moving in the magnetosheath at 1500 LT on a magnetopause skimming segment of its orbit. The very steady southward magnetic field in the magnetosheath (negative Bz of the CME) was highly inclined forming an angle of 45° with respect to the north direction. The observed oxygen enhancements in the magnetosheath show anisotropic angular distributions which occupy a varying fraction of the unit sphere. These distributions became particularly narrow during the passage of a solar wind pressure pulse between between 1050 and 1113 UT. The details of the angular distributions in the magnetosheath favour a leakage model, although the reconnection model cannot be denied.  相似文献   
849.
Since the Voyager mission it is known that Saturn Kilometric Radiation (SKR) is strongly influenced by external forces, i.e., the solar wind and in particular the solar wind ram pressure. Recent studies using Cassini data essentially confirmed these findings for particular periods during the first Cassini orbit of Saturn. The data coverage of SKR by the Cassini/RPWS experiment for the period of six months prior to Saturn Orbit Insertion (July 1, 2004) is rather continuous, whereas there are gaps in the solar wind plasma data. The strong correlation of SKR with the solar wind may provide an indication on the variations of the solar wind plasma, specifically during the gap periods. These periods lacking solar wind data are substituted by Ulysses solar wind data which have been propagated over ∼4 AU, applying magnetohydrodynamic propagation models. Cross correlation studies showed that Ulysses solar wind data can be taken as a substitute for missing Cassini data. The use of SKR as monitor for solar wind variations is discussed. With the present set of observations the SKR proxy lacks significant reliability.  相似文献   
850.
This paper reviews basic concepts of particle dynamics underlying theoretical aspect of radiation belt modeling and data analysis. We outline the theory of adiabatic invariants of quasiperiodic Hamiltonian systems and derive the invariants of particle motion trapped in the radiation belts. We discuss how the nonlinearity of resonant interaction of particles with small-amplitude plasma waves, ubiquitous across the inner magnetosphere, can make particle motion stochastic. Long-term evolution of a stochastic system can be described by the Fokker-Plank (diffusion) equation. We derive the kinetic equation of particle diffusion in the invariant space and discuss its limitations and associated challenges which need to be addressed in forthcoming radiation belt models and data analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号