首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18013篇
  免费   191篇
  国内免费   285篇
航空   10332篇
航天技术   5122篇
综合类   370篇
航天   2665篇
  2021年   178篇
  2018年   185篇
  2016年   177篇
  2014年   490篇
  2013年   569篇
  2012年   467篇
  2011年   598篇
  2010年   461篇
  2009年   812篇
  2008年   865篇
  2007年   405篇
  2006年   483篇
  2005年   391篇
  2004年   429篇
  2003年   489篇
  2002年   471篇
  2001年   543篇
  2000年   359篇
  1999年   469篇
  1998年   417篇
  1997年   319篇
  1996年   359篇
  1995年   430篇
  1994年   373篇
  1993年   365篇
  1992年   286篇
  1991年   259篇
  1990年   239篇
  1989年   364篇
  1988年   208篇
  1987年   232篇
  1986年   223篇
  1985年   635篇
  1984年   506篇
  1983年   390篇
  1982年   483篇
  1981年   606篇
  1980年   243篇
  1979年   182篇
  1978年   189篇
  1977年   144篇
  1976年   155篇
  1975年   181篇
  1974年   180篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   143篇
  1969年   147篇
  1967年   142篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
231.
A quartz sensor of small accelerations with a capacitive transducer is designed and produced, allowing one to measure spacecraft accelerations with a resolution of 10–7 m/s2 in the range ±10–1 m/s2. The results of calibration of the sensor by the method of inclinations are presented.  相似文献   
232.
基于Poisson模型的湍流退化图像多帧迭代复原算法   总被引:4,自引:0,他引:4  
随着航天空间技术的发展,空中目标的成像探测研究越来越重要。受大气湍流的干扰,观测到的目标图像是严重模糊的。为了从观察到的多帧含噪的湍流退化图像中将目标原图像有效地恢复出来,本文提出了一种新颖的基于图像统计模型的图像复原算法。跟据图像Poisson概率模型建立了有关多帧图像数据的对数似然函数,通过极大化该对数似然函数,推导出了目标图像及各帧图像点扩展函数的迭代求解关系。同时。将点扩展函数的支持域等先验条件有效地加入到迭代计算过程中,以便快速地利用迭代技术将目标图像和各帧点扩展函数估计出来。该算法能用少数帧图像极大程度地恢复出目标图像。为了验证本文算法的恢复效果和可靠性,对在强噪声污染条件下的湍流退化图像进行了恢复实验,实验结果表明本文算法对空中目标湍流退化图像的复原是非常有效的。  相似文献   
233.
Anselmo  L.  Pardini  C. 《Space Debris》2000,2(2):67-82
The short- and long-term effects of spacecraft explosions, as a function of the end-of-life re-orbit altitude above the geostationary orbit (GEO), were analyzed in terms of their additional contribution to the debris flux in the GEO ring. The simulated debris clouds were propagated for 72yrs, taking into account all the relevant orbital perturbations.The results obtained show that 6–7 additional explosions in GEO would be sufficient, in the long term, to double the current collision risk with sizable objects in GEO. Unfortunately, even if spacecraft were to re-orbit between 300 and 500km above GEO, this would not significantly improve the situation. In fact, an altitude increase of at least 2000km would have to be adopted to reduce by one order of magnitude the long-term risk of collision among geostationary satellites and explosion fragments. The optimal debris mitigation strategy should be a compromise between the reliability and effectiveness of spacecraft end-of-life passivation, the re-orbit altitude and the acceptable debris background in the GEO ring. However, for as long as the re-orbit altitudes currently used are less than 500km above GEO, new spacecraft explosions must be avoided in order to preserve the geostationary environment over the long term.  相似文献   
234.
K. Sweet 《Space Policy》1999,15(4):223-231
The Earth has been hit by NEOs many times in its history and there is always a risk that this will happen again. While we are beginning to acquire the technology that could warn of and divert a future collision, the legal instruments needed to facilitate a global response to the problem are lacking, especially given that the most likely means of diverting a NEO would involve nuclear weapons that could also be used on Earth. An analysis of the current legal situation is used to support the argument that new rules must be created. The author also discusses US Air Force policy on the subject and whether planetary defense is consistent with its goal of achieving and sustaining US superiority in space.  相似文献   
235.
In 1994–1995 Lavochkin Association (Russia) together with the other enterprises in accordance with technical requirements of the Russian Space agency, developed a new Russian communication satellite of a small class that will operate in both the geostationary (GSO) and high-elliptical (HEO) orbits. This satellite may be injected into operational orbits using a SOYUZ-2 launch vehicle (LV) and a FREGAT upper stage (US) from Plesetsk and Baykonur space launch sites (SLS).The main reason for creating such a satellite was to decrease the cost of the support and development of the Russian communication geostationary satellites group.Russian satellites Horizont, Express, Ekran and Gals, which operate in GSO, are the basis of the space segment for communications, radio and TV broadcasting. All of these satellites are injected into GSO by the PROTON LV. PROTON is a launch vehicle of a heavy class. The use of a middle class LV instead of a heavy class will allow to reduce considerably the launch cost. The change of a heavy class LV to a LV of middle class determined one economic reason for this project. Besides, the opportunity to launch S/C into GSO from Russian Plesetsk SLS increases the independence of Russia in the domain of space communications, despite the presence of the contract with Kazachstan about the rent of Baykonur SLS. Finally, use of small satellites with a rather small number of transponders is more effective than the use of big satellites. It will allow also to increase a satellite group (by the launch of additional satellites) precisely in accordance to the development of the ground segment.  相似文献   
236.
A relatively general formulation for studying the dynamics and control of an arbitrary spacecraft with interconnected flexible bodies has been developed accounting for transient system properties, shift in the center of mass, shear deformations, rotary inertias and geometric nonlinearities. This self-contained, comprehensive, numerical algorithm using system modes is applicable to a large class of spacecraft configurations of contemporary and future interests. Here, versatility of the approach is demonstrated through the dynamics and control studies aimed at the evolving Space Station Freedom.  相似文献   
237.
In 1994-1995 Lavochkin Association (Russia) together with the other enterprises in accordance with technical requirements of the Russian Space agency, developed a new Russian communication satellite of a small class that will operate in both the geostationary (GSO) and high-elliptical (HEO) orbits. This satellite may be injected into operational orbits using a SOYUZ-2 launch vehicle (LV) and a FREGAT upper stage (US) from Plesetsk and Baykonur space launch sites (SLS).The main reason for creating such a satellite was to decrease the cost of the support and development of the Russian communication geostationary satellites group.Russian satellites Horizont, Express, Ekran and Gals, which operate in GSO, are the basis of the space segment for communications, radio and TV broadcasting. All of these satellites are injected into GSO by the PROTON LV. PROTON is a launch vehicle of a heavy class. The use of a middle class LV instead of a heavy class will allow to reduce considerably the launch cost. The change of a heavy class LV to a LV of middle class determined one economic reason for this project. Besides, the opportunity to launch S/C into GSO from Russian Plesetsk SLS increases the independence of Russia in the domain of space communications, despite the presence of the contract with Kazachstan about the rent of Baykonur SLS. Finally, use of small satellites with a rather small number of transponders is more effective than the use of big satellites. It will allow also to increase a satellite group (by the launch of additional satellites) precisely in accordance to the development of the ground segment.  相似文献   
238.
The widely distributed nature of the Space Station Freedom program, plus continuous multi-year operations will force program planners to develop innovative planning concepts. The traditional centralized planning operation will not be adequate. It will be replaced by multiple small planning centers working within guidelines issued by a central planning authority. Plans will not be optimized; rather, operating efficiency and user flexibility will be blended to satisfy program goals. The key to this new approach is the application of new planning methodologies and system development technologies to accommodate distributed resources that must be integrated. Resources will be distributed to the multiple planning entities in such a way that, when the several plans are built and then integrated, they will fit together with minimal modification. The plan itself will be an envelope schedule containing resource limits and constraint boundaries within which users will be free to make choices of the specific activities they will execute, up to the time of execution. Some level of margin within program guidelines will be built in to allow for variation and unforeseen change. This paper presents the authors' recommended planning approach and cites two NASA systems being developed that will utilize these resource distribution/integration planning concepts, methodologies and development technologies.  相似文献   
239.
In the last two years the USSR has not only acknowledged publicly for the first time that it was trying to ‘race’ the USA to put the first man on the Moon, but they have finally given some details of the programme, the equipment and the political in-fighting which ensured that the programme was a failure. This article traces the history of the Soviet manned lunar programme and also discusses the implications for the future development of the Soviet manned programme of the giant N-1 booster's cancellation in 1974.  相似文献   
240.
降低NEPE推进剂燃速的途径探讨   总被引:4,自引:0,他引:4  
通过对NEPE推进剂燃烧表面的热平衡分析,指出了影响推进剂燃速的3个因素:“嘶嘶”区(fizz)的温度梯度、凝聚相反应热和燃面温度,提高了降低NEPE推进剂燃速的可能途径,研究了某些燃速降速剂的作用及其对推进剂能量的影响。用实验证明了降低燃速几个途径的可行性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号