首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   1篇
  国内免费   10篇
航空   186篇
航天技术   84篇
综合类   1篇
航天   47篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   15篇
  2013年   8篇
  2012年   13篇
  2011年   31篇
  2010年   9篇
  2009年   16篇
  2008年   22篇
  2007年   12篇
  2006年   8篇
  2005年   8篇
  2004年   14篇
  2003年   6篇
  2001年   9篇
  2000年   7篇
  1999年   11篇
  1998年   7篇
  1997年   2篇
  1996年   8篇
  1995年   5篇
  1994年   4篇
  1993年   7篇
  1992年   7篇
  1991年   5篇
  1990年   7篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   6篇
  1982年   4篇
  1981年   3篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有318条查询结果,搜索用时 15 毫秒
251.
This study proposes a process to obtain an optimal helicopter rotor blade shape for aerodynamic performance in hover flight. A new geometry representation algorithm which uses the class function/shape function transformation (CST) is employed to generate airfoil coordinates. With this approach, airfoil shape is considered in terms of design variables. The optimization process is constructed by integrating several programs developed by author. The design variables include twist, taper ratio, point of taper initiation, blade root chord, and coefficients of the airfoil distribution function. Aerodynamic constraints consist of limits on power available in hover and forward flight. The trim condition must be attainable. This paper considers rotor blade configuration for the hover flight condition only, so that the required power in hover is chosen as the objective function of the optimization problem. Sensitivity analysis of each design variable shows that airfoil shape has an important role in rotor performance. The optimum rotor blade reduces the required hover power by 7.4% and increases the figure of merit by 6.5%, which is a good improvement for rotor blade design.  相似文献   
252.
Innovative processing of satellite radar altimetry over solid Earth has been successfully applied for observing geodynamic process of glacial isostatic adjustment over the former Laurentide Ice Sheet in the present-day Hudson Bay land region. In this contribution, a simulation is conducted to study the prospects of the applications of space-/airborne and land-based Global Navigation Satellite System (GNSS) reflectometry to synoptically observe global-scale geodynamic processes with a vertical accuracy of ∼2 mm/yr.  相似文献   
253.
The Rosetta Plasma Consortium (RPC) will make in-situ measurements of the plasma environment of comet 67P/Churyumov-Gerasimenko. The consortium will provide the complementary data sets necessary for an understanding of the plasma processes in the inner coma, and the structure and evolution of the coma with the increasing cometary activity. Five sensors have been selected to achieve this: the Ion and Electron Sensor (IES), the Ion Composition Analyser (ICA), the Langmuir Probe (LAP), the Mutual Impedance Probe (MIP) and the Magnetometer (MAG). The sensors interface to the spacecraft through the Plasma Interface Unit (PIU). The consortium approach allows for scientific, technical and operational coordination, and makes optimum use of the available mass and power resources.  相似文献   
254.
Korea is planning a series of lunar space programs in 2020 starting with a lunar orbiter and a lander with a rover. Compared to other countries, Korea has a relatively brief history in space and planetary sciences. With the expected Korean missions on the near-term horizon and the relatively few Korean planetary scientists, Korea Institute of Geoscience and Mineral Resources (KIGAM) has established a new planetary research group focusing on development of prospective lunar instruments, analysis of the publicly available planetary data of the Moon, organizing nationwide planetary workshops, and initiating planetary educational programs with academic institutions. Korea has also initiated its own rocket development program, which could acquire a rocket-launch capability toward the Korean lunar mission. For the prospective Korea’s lunar science program, feasibility studies for some candidate science payloads have been started since 2010 for an orbiter and a lander. The concept design of each candidate instrument has been accomplished in 2012. It is expected that the development of science payloads may start by 2014 as Phase A. Not only developing hardware required for the lunar mission but also educational activities for young students are high priorities for Korea. The new plan of the Korean lunar mission can be successfully accomplished with international cooperative outreach programs in conjunction with internationally accessible planetary data system (PDS). This paper introduces the KIGAM’s international cooperative planetary research and educational programs and also summarizes other nationwide new developments for Korean lunar research projects at Kyung Hee University and Hanyang University.  相似文献   
255.
    
提出根据载客量、航程、巡航速度和高度即可初步确定斜置飞翼超声速旅客机气动外形参数的方法.讨论了对称面弦长的选取范围,确定了展弦比、起飞翼载荷与展长的关系,提出了展弦比、起飞翼载荷的选取原则,并推导了油箱展向长度和客舱展向长度迭代公式.为了研究技术要求对斜置飞翼超声速旅客机气动外形参数的影响,对载客量250~550、航程6500~10000 km、升阻比11~12内若干设计点进行了研究分析.结果表明,所设计的飞翼存在一起飞重量阈值,当起飞重量小于该阈值时机翼面积由展弦比下限确定,当起飞重量大于此阈值时机翼面积由起飞翼载荷上限确定;提高巡航升阻比可减小由起飞翼载荷上限确定的机翼面积.  相似文献   
256.
Selection of the Mars Science Laboratory Landing Site   总被引:1,自引:0,他引:1  
The selection of Gale crater as the Mars Science Laboratory landing site took over five years, involved broad participation of the science community via five open workshops, and narrowed an initial >50 sites (25 by 20?km) to four finalists (Eberswalde, Gale, Holden and Mawrth) based on science and safety. Engineering constraints important to the selection included: (1)?latitude (±30°) for thermal management of the rover and instruments, (2)?elevation (<?1?km) for sufficient atmosphere to slow the spacecraft, (3)?relief of <100–130?m at baselines of 1–1000?m for control authority and sufficient fuel during powered descent, (4)?slopes of <30° at baselines of 2–5?m for rover stability at touchdown, (5)?moderate rock abundance to avoid impacting the belly pan during touchdown, and (6)?a?radar-reflective, load-bearing, and trafficable surface that is safe for landing and roving and not dominated by fine-grained dust. Science criteria important for the selection include the ability to assess past habitable environments, which include diversity, context, and biosignature (including organics) preservation. Sites were evaluated in detail using targeted data from instruments on all active orbiters, and especially Mars Reconnaissance Orbiter. All of the final four sites have layered sedimentary rocks with spectral evidence for phyllosilicates that clearly address the science objectives of the mission. Sophisticated entry, descent and landing simulations that include detailed information on all of the engineering constraints indicate all of the final four sites are safe for landing. Evaluation of the traversabilty of the landing sites and target “go to” areas outside of the ellipse using slope and material properties information indicates that all are trafficable and “go to” sites can be accessed within the lifetime of the mission. In the final selection, Gale crater was favored over Eberswalde based on its greater diversity and potential habitability.  相似文献   
257.
This chapter reviews how our knowledge of CMEs and CME-associated phenomena has been improved, since the launch of the SOHO mission, thanks to multi-wavelength analysis. The combination of data obtained from space-based experiments and ground based instruments allows us to follow the space-time development of an event from the bottom of the corona to large distances in the interplanetary medium. Since CMEs originate in the low solar corona, understanding the physical processes that generate them is strongly dependant on coordinated multi-wavelength observations. CMEs display a large diversity in morphology and kinematic properties, but there is presently no statistical evidence that those properties may serve to group them into different classes. When a CME takes place, the coronal magnetic field undergoes restructuring. Much of the current research is focused on understanding how the corona sustains the stresses that allow the magnetic energy to build up and how, later on, this magnetic energy is released during eruptive flares and CMEs. Multi-wavelength observations have confirmed that reconnection plays a key role during the development of CMEs. Frequently, CMEs display a rather simple shape, exhibiting a well known three-part structure (bright leading edge, dark cavity and bright knot). These types of events have led to the proposal of the ‘`standard model’' of the development of a CME, a model which predicts the formation of current sheets. A few recent coronal observations provide some evidence for such sheets. Other more complex events correspond to multiple eruptions taking place on a time scale much shorter than the cadence of coronagraph instruments. They are often associated with large-scale dimming and coronal waves. The exact nature of these waves and the physical link between these different manifestations are not yet elucidated. We also discuss what kind of shocks are produced during a flare or a CME. Several questions remain unanswered. What is the nature of the shocks in the corona (blast-wave or piston-driven?) How they are related to Moreton waves seen in Hα? How they are related to interplanetary shocks? The last section discusses the origin of energetic electrons detected in the corona and in the interplanetary medium. “Complex type III-like events,”which are detected at hectometric wavelengths, high in the corona, and are associated with CMEs, appear to originate from electrons that have been accelerated lower in the corona and not at the bow shock of CMEs. Similarly, impulsive energetic electrons observed in the interplanetary medium are not the exclusive result of electron acceleration at the bow shocks of CMEs; rather they have a coronal origin.  相似文献   
258.
在燃油价格上涨时,航空公司所期望的性能改进多与节省燃油有关;在燃油价格冲高回落、世界经济大衰退的今日,各航空公司关心的是如何获得最佳的运营成本.  相似文献   
259.
Addition of calcium lactate and vitamin C, a mild heating, deep-freezing, and gamma irradiation at 25 kGy were conducted to prepare Kimchi as a ready-to-eat space food. It was confirmed that the space food was sterilized by an irradiation at 25 kGy through incubation at 37 °C for 30 days. The hardness of the Space Kimchi (SK) was lower than the untreated Kimchi (CON), but higher than the irradiated Kimchi (IR). Also, this result was supported by the scanning electron microscopic observation. Sensory attributes of the SK were similar to CON, and maintained during preservation at 35 °C for 30 days. According to the Ames test, Kimchi sterilized with a high-dose irradiation exerted no mutagenic activity in the bacterial strains of Salmonella typhimurium. And, the SK was certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems.  相似文献   
260.
Attitude determination refers to determining the orientation of a vehicle relative to its reference coordinate system. This paper presents a new algorithm for three-axis attitude determination using measurement vectors composed of incomplete vector components. The attitude determination performance of the proposed algorithm is compared with those of the TRIAD and QUEST algorithms in a simulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号