首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
航空   14篇
航天技术   2篇
航天   2篇
  2010年   1篇
  2009年   1篇
  2003年   2篇
  2002年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1982年   1篇
  1975年   1篇
  1973年   1篇
  1969年   1篇
  1968年   3篇
  1967年   1篇
排序方式: 共有18条查询结果,搜索用时 46 毫秒
11.
Wolf  Aron A. 《Space Science Reviews》2002,104(1-4):101-128
The Cassini mission to Saturn employs a Saturn orbiter and a Titan probe to conduct an intensive investigation of the Saturnian system. The orbiter flies a series of orbits, incorporating flybys of the Saturnian satellites, called the ‘satellite tour.’ During the tour, the gravitational fields of the satellites (mainly Titan) are used to modify and control the orbit, targeting from one satellite flyby to the next. The tour trajectory must also be designed to maximize opportunities for a diverse set of science observations, subject to mission-imposed constraints. Tour design studies have been conducted for Cassini over a period of several years to identify trades and strategies for achieving these sometimes conflicting goals. Concepts, strategies, and techniques previously developed for the Galileo mission to Jupiter have been modified, and new ones have been developed, to meet the requirements of the Cassini mission. A sample tour is presented illustrating the application of tour design strategies developed for Cassini. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
12.
The large-scale electrical coupling between the ionosphere and magnetosphere is reviewed, particularly with respect to behavior on time scales of hours or more. The following circuit elements are included: (1) the magnetopause boundary layer, which serves as the generator for the magnetospheric-convection circuit; (2) magnetic field lines, usually good conductors but sometimes subject to anomalous resistivity; (3) the ionosphere, which can conduct current across magnetic field lines; (4) the magnetospheric particle distributions, including tail current and partial-ring currents. Magnetic merging and a viscous interaction are considered as possible generating mechanisms, but merging seems the most likely alternative. Several mechanisms have been proposed for causing large potential drops along magnetic field lines in the upper ionosphere, and many isolated measurements of parallel electric fields have been reported, but the global pattern and significance of these electric fields are unknown. Ionospheric conductivities are now thoroughly measured, but are highly variable. Simple self-consistent theoretical models of the magnetospheric-convection system imply that the magnetospheric particles should shield the inner magnetosphere and low-latitude ionosphere from most of the time-average convection electric field.  相似文献   
13.
The synthesis of the phase-modulated waveform whose ambiguity function is the optimum estimate of some desired ambiguity function is accomplished by expanding the phase modulation in an orthogonal series. The ambiguity function x (?, ?d)|2 and the value of an arbitrary cost function defined on the (?, ?d) plane are then expressed in terms of the coefficients of the orthogonal series. The optimum waveform can then be determined by solving the variational equations for the coefficients. Numerical examples are presented for the case where it is desired to synthesize a desired ambiguity function x(?, ?d) for some rectangular region of the (?, ?d) plane.  相似文献   
14.
We discuss perspectives for new tests of general relativity which are based on recent technological developments as well as new ideas. We focus our attention on tests performed with atomic clocks and do not repeat arguments present in the other contributions to the present issue (Space Sci. Rev. 2009, This Issue). In particular, we present the scientific motivations of the space projects ACES (Salomon et al. in CR Acad. Sci. IV-2:1313, 2001) and SAGAS (Wolf et al. in Exp. Astron. 23:651, 2009).  相似文献   
15.
16.
17.
18.
Wolf  R. A.  Spiro  R. W. 《Space Science Reviews》1997,80(1-2):199-216
Over the last 25 years, considerable scientific effort has been expended in the development of quantitative models of the dynamics of Earth's inner magnetosphere, particularly on studies of the injection of the storm-time ring current and of dynamic variations in the shape and size of the plasmasphere. Nearly all modeling studies of ring-current injection agree that time-varying magnetospheric convection can produce approximately the ion fluxes that are observed in the storm-time ring current, but the truth of that assumption has never been demonstrated conclusively. It is not clear that the actual variations of convection electric fields are strong enough to explain the observed flux increases in ~100 keV ions at the peak of the storm-time ring current. Observational comparisons are generally far from tight, primarily due to the paucity of ring-current measurements and to basic limitations of single-point observations. Also, most of the theoretical models combine state-of-the-art treatment of some aspects of the problem with highly simplified treatment of other aspects. Even the most sophisticated treatments of the sub-problems include substantial uncertainties, including the following: (i) There is still considerable theoretical and observational uncertainty about the dynamics of the large-scale electric fields in the inner magnetosphere; (ii) No one has ever calculated a force-balanced, time-dependent magnetic-field model consistent with injection of the storm-time ring current; (iii) The most obvious check on the overall realism of a ring-current injection model would be to compare its predicted Dst index against observations; however, theoretical calculations of that index usually employ the Dessler-Parker-Sckopke relation, which was derived from the assumption of a dipole magnetic field and cannot be applied reliably to conditions where the plasma pressure significantly distorts the field; (iv) Although loss rates by charge exchange and Coulomb scattering can be calculated with reasonable accuracy, it remains unclear whether wave-induced ion precipitation plays an important role in the decay of the ring current. However, considerable progress could be made in the next few years. Spacecraft that can provide images of large regions of the inner magnetosphere should eliminate much of the present ambiguity associated with single-point measurements. On the theoretical side, it will soon be possible to construct models that, for the first time, will solve a complete set of large-scale equations for the entire inner magnetosphere. The biggest uncertainty in the calculation of the size and shape of the plasmasphere lies in the dynamics and structure of the electric field. It is still not clear how important a role interchange instability plays in determining the shape of the plasmapause or in creating density fine structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号